These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 27230938)

  • 1. Microbial recovery of vanadium by the acidophilic bacterium, Acidocella aromatica.
    Okibe N; Maki M; Nakayama D; Sasaki K
    Biotechnol Lett; 2016 Sep; 38(9):1475-81. PubMed ID: 27230938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioreduction and immobilization of hexavalent chromium by the extremely acidophilic Fe(III)-reducing bacterium Acidocella aromatica strain PFBC.
    Masaki Y; Hirajima T; Sasaki K; Okibe N
    Extremophiles; 2015 Mar; 19(2):495-503. PubMed ID: 25651881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sulfidogenesis in low pH (3.8-4.2) media by a mixed population of acidophilic bacteria.
    Kimura S; Hallberg KB; Johnson DB
    Biodegradation; 2006 Mar; 17(2):159-67. PubMed ID: 16456614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acidocella aromatica sp. nov.: an acidophilic heterotrophic alphaproteobacterium with unusual phenotypic traits.
    Jones RM; Hedrich S; Johnson DB
    Extremophiles; 2013 Sep; 17(5):841-50. PubMed ID: 23884710
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioreduction of vanadium (V) in groundwater by autohydrogentrophic bacteria: Mechanisms and microorganisms.
    Xu X; Xia S; Zhou L; Zhang Z; Rittmann BE
    J Environ Sci (China); 2015 Apr; 30():122-8. PubMed ID: 25872716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial reduction and precipitation of vanadium (V) in groundwater by immobilized mixed anaerobic culture.
    Zhang B; Hao L; Tian C; Yuan S; Feng C; Ni J; Borthwick AG
    Bioresour Technol; 2015 Sep; 192():410-7. PubMed ID: 26067477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Palladium bionanoparticles production from acidic Pd(II) solutions and spent catalyst leachate using acidophilic Fe(III)-reducing bacteria.
    Okibe N; Nakayama D; Matsumoto T
    Extremophiles; 2017 Nov; 21(6):1091-1100. PubMed ID: 29027017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetics of metal resistance in acidophilic prokaryotes of acidic mine environments.
    Banerjee PC
    Indian J Exp Biol; 2004 Jan; 42(1):9-25. PubMed ID: 15274476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence that the potential for dissimilatory ferric iron reduction is widespread among acidophilic heterotrophic bacteria.
    Coupland K; Johnson DB
    FEMS Microbiol Lett; 2008 Feb; 279(1):30-5. PubMed ID: 18081844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solid and liquid media for isolating and cultivating acidophilic and acid-tolerant sulfate-reducing bacteria.
    Ňancucheo I; Rowe OF; Hedrich S; Johnson DB
    FEMS Microbiol Lett; 2016 May; 363(10):. PubMed ID: 27036143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Autotrophic Vanadium(V) Bioreduction in Groundwater by Elemental Sulfur and Zerovalent Iron.
    Zhang B; Qiu R; Lu L; Chen X; He C; Lu J; Ren ZJ
    Environ Sci Technol; 2018 Jul; 52(13):7434-7442. PubMed ID: 29874055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inducible aluminum resistance of Acidiphilium cryptum and aluminum tolerance of other acidophilic bacteria.
    Fischer J; Quentmeier A; Gansel S; Sabados V; Friedrich CG
    Arch Microbiol; 2002 Dec; 178(6):554-8. PubMed ID: 12420179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduction of vanadium(V) by Enterobacter cloacae EV-SA01 isolated from a South African deep gold mine.
    van Marwijk J; Opperman DJ; Piater LA; van Heerden E
    Biotechnol Lett; 2009 Jun; 31(6):845-9. PubMed ID: 19229481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial reduction and precipitation of vanadium by Shewanella oneidensis.
    Carpentier W; Sandra K; De Smet I; Brigé A; De Smet L; Van Beeumen J
    Appl Environ Microbiol; 2003 Jun; 69(6):3636-9. PubMed ID: 12788772
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acidisoma tundrae gen. nov., sp. nov. and Acidisoma sibiricum sp. nov., two acidophilic, psychrotolerant members of the Alphaproteobacteria from acidic northern wetlands.
    Belova SE; Pankratov TA; Detkova EN; Kaparullina EN; Dedysh SN
    Int J Syst Evol Microbiol; 2009 Sep; 59(Pt 9):2283-90. PubMed ID: 19620354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vanadium requirements and uptake kinetics in the dinitrogen-fixing bacterium Azotobacter vinelandii.
    Bellenger JP; Wichard T; Kraepiel AM
    Appl Environ Microbiol; 2008 Mar; 74(5):1478-84. PubMed ID: 18192412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acidophilic algae isolated from mine-impacted environments and their roles in sustaining heterotrophic acidophiles.
    Nancucheo I; Barrie Johnson D
    Front Microbiol; 2012; 3():325. PubMed ID: 22973267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vanadium (IV) formation in the reduction of vanadate by glutathione reductase/NADPH and the role of molecular oxygen.
    Shi X; Flynn DC; Liu K; Dalal N
    Ann Clin Lab Sci; 1997; 27(6):422-7. PubMed ID: 9433540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aerobic and anaerobic oxidation of hydrogen by acidophilic bacteria.
    Hedrich S; Johnson DB
    FEMS Microbiol Lett; 2013 Dec; 349(1):40-5. PubMed ID: 24117601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accumulation and biotransformation of vanadium in Opuntia microdasys.
    Yang JY; Tang Y
    Bull Environ Contam Toxicol; 2015 Apr; 94(4):448-52. PubMed ID: 25708296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.