These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 27230940)

  • 1. Mapping the electrostatic force field of single molecules from high-resolution scanning probe images.
    Hapala P; Švec M; Stetsovych O; van der Heijden NJ; Ondráček M; van der Lit J; Mutombo P; Swart I; Jelínek P
    Nat Commun; 2016 May; 7():11560. PubMed ID: 27230940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Submolecular Resolution Imaging of Molecules by Atomic Force Microscopy: The Influence of the Electrostatic Force.
    van der Lit J; Di Cicco F; Hapala P; Jelinek P; Swart I
    Phys Rev Lett; 2016 Mar; 116(9):096102. PubMed ID: 26991186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Origin of High-Resolution IETS-STM Images of Organic Molecules with Functionalized Tips.
    Hapala P; Temirov R; Tautz FS; Jelínek P
    Phys Rev Lett; 2014 Nov; 113(22):226101. PubMed ID: 25494078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Submolecular resolution in scanning probe images of Sn-phthalocyanines on Cu(1 0 0) using metal tips.
    Buchmann K; Hauptmann N; Foster AS; Berndt R
    J Phys Condens Matter; 2017 Oct; 29(39):394004. PubMed ID: 28677588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-resolution noncontact atomic force microscopy.
    Pérez R; García R; Schwarz U
    Nanotechnology; 2009 Jul; 20(26):260201. PubMed ID: 19531843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface-charge differentiation of streptavidin and avidin by atomic force microscopy-force spectroscopy.
    Almonte L; Lopez-Elvira E; Baró AM
    Chemphyschem; 2014 Sep; 15(13):2768-73. PubMed ID: 24990795
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AFM force mapping for characterizing patterns of electrostatic charges on SiO2 electrets.
    Zhang Y; Zhao D; Tan X; Cao T; Zhang X
    Langmuir; 2010 Jul; 26(14):11958-62. PubMed ID: 20476727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Submolecular Imaging by Noncontact Atomic Force Microscopy with an Oxygen Atom Rigidly Connected to a Metallic Probe.
    Mönig H; Hermoso DR; Díaz Arado O; Todorović M; Timmer A; Schüer S; Langewisch G; Pérez R; Fuchs H
    ACS Nano; 2016 Jan; 10(1):1201-9. PubMed ID: 26605698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High resolution noncontact atomic force microscopy imaging with oxygen-terminated copper tips at 78 K.
    Yesilpinar D; Schulze Lammers B; Timmer A; Amirjalayer S; Fuchs H; Mönig H
    Nanoscale; 2020 Feb; 12(5):2961-2965. PubMed ID: 31970359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resolving Intra- and Inter-Molecular Structure with Non-Contact Atomic Force Microscopy.
    Jarvis SP
    Int J Mol Sci; 2015 Aug; 16(8):19936-59. PubMed ID: 26307976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical simulations for a quantitative analysis of AFM electrostatic nanopatterning on PMMA by Kelvin force microscopy.
    Palleau E; Ressier L; Borowik Ł; Mélin T
    Nanotechnology; 2010 Jun; 21(22):225706. PubMed ID: 20453285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Copper-oxide tip functionalization for submolecular atomic force microscopy.
    Mönig H
    Chem Commun (Camb); 2018 Sep; 54(71):9874-9888. PubMed ID: 30124700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing Charges on the Atomic Scale by Means of Atomic Force Microscopy.
    Albrecht F; Repp J; Fleischmann M; Scheer M; Ondráček M; Jelínek P
    Phys Rev Lett; 2015 Aug; 115(7):076101. PubMed ID: 26317733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoscale quantitative measurement of the potential of charged nanostructures by electrostatic and Kelvin probe force microscopy: unraveling electronic processes in complex materials.
    Liscio A; Palermo V; Samorì P
    Acc Chem Res; 2010 Apr; 43(4):541-50. PubMed ID: 20058907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characteristic Contrast in Δfmin Maps of Organic Molecules Using Atomic Force Microscopy.
    van der Heijden NJ; Hapala P; Rombouts JA; van der Lit J; Smith D; Mutombo P; Švec M; Jelinek P; Swart I
    ACS Nano; 2016 Sep; 10(9):8517-25. PubMed ID: 27508403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrostatic Discovery Atomic Force Microscopy.
    Oinonen N; Xu C; Alldritt B; Canova FF; Urtev F; Cai S; Krejčí O; Kannala J; Liljeroth P; Foster AS
    ACS Nano; 2022 Jan; 16(1):89-97. PubMed ID: 34806866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-molecule imaging of cell surfaces using near-field nanoscopy.
    Hinterdorfer P; Garcia-Parajo MF; Dufrêne YF
    Acc Chem Res; 2012 Mar; 45(3):327-36. PubMed ID: 21992025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Periodic Charging of Individual Molecules Coupled to the Motion of an Atomic Force Microscopy Tip.
    Kocić N; Weiderer P; Keller S; Decurtins S; Liu SX; Repp J
    Nano Lett; 2015 Jul; 15(7):4406-11. PubMed ID: 26039575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biofunctionalization of carbon nanotubes for atomic force microscopy imaging.
    Woolley AT
    Methods Mol Biol; 2004; 283():305-19. PubMed ID: 15197321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Imaging of all dangling bonds and their potential on the Ge/Si105 surface by noncontact atomic force microscopy.
    Eguchi T; Fujikawa Y; Akiyama K; An T; Ono M; Hashimoto T; Morikawa Y; Terakura K; Sakurai T; Lagally MG; Hasegawa Y
    Phys Rev Lett; 2004 Dec; 93(26 Pt 1):266102. PubMed ID: 15697993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.