BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 27231475)

  • 1. The role of glutamatergic pathway between septum and hippocampus in the memory formation.
    Khakpai F; Zarrindast MR; Nasehi M; Haeri-Rohani A; Eidi A
    EXCLI J; 2013; 12():41-51. PubMed ID: 27231475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Septo-hippocampo-septal loop and memory formation.
    Khakpai F; Nasehi M; Haeri-Rohani A; Eidi A; Zarrindast MR
    Basic Clin Neurosci; 2013; 4(1):5-23. PubMed ID: 25337323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 5-HT(1A) and NMDA receptors interact in the rat medial septum and modulate hippocampal-dependent spatial learning.
    Elvander-Tottie E; Eriksson TM; Sandin J; Ogren SO
    Hippocampus; 2009 Dec; 19(12):1187-98. PubMed ID: 19309036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of medial septal glutamatergic neurons and their projection to the hippocampus.
    Colom LV; Castaneda MT; Reyna T; Hernandez S; Garrido-Sanabria E
    Synapse; 2005 Dec; 58(3):151-64. PubMed ID: 16108008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scopolamine induced memory impairment; possible involvement of NMDA receptor mechanisms of dorsal hippocampus and/or septum.
    Khakpai F; Nasehi M; Haeri-Rohani A; Eidi A; Zarrindast MR
    Behav Brain Res; 2012 May; 231(1):1-10. PubMed ID: 22421366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. N-methyl-D-aspartate receptors in the medial septal area have a role in spatial and emotional learning in the rat.
    Elvander-Tottie E; Eriksson TM; Sandin J; Ogren SO
    Neuroscience; 2006 Nov; 142(4):963-78. PubMed ID: 16952425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of NMDA receptors of the medial septum and dorsal hippocampus on memory acquisition.
    Khakpai F; Nasehi M; Zarrindast MR
    Pharmacol Biochem Behav; 2016 Apr; 143():18-25. PubMed ID: 26780596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optogenetic Activation of Septal Glutamatergic Neurons Drive Hippocampal Theta Rhythms.
    Robinson J; Manseau F; Ducharme G; Amilhon B; Vigneault E; El Mestikawy S; Williams S
    J Neurosci; 2016 Mar; 36(10):3016-23. PubMed ID: 26961955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential and complementary roles of medial and lateral septum in the orchestration of limbic oscillations and signal integration.
    Tsanov M
    Eur J Neurosci; 2018 Oct; 48(8):2783-2794. PubMed ID: 29044802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The entorhino-septo-supramammillary nucleus connection in the rat: morphological basis of a feedback mechanism regulating hippocampal theta rhythm.
    Leranth C; Carpi D; Buzsaki G; Kiss J
    Neuroscience; 1999; 88(3):701-18. PubMed ID: 10363811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Serotonergic modulation of septo-hippocampal and septo-mammillary theta activity during spatial learning, in the rat.
    Gutiérrez-Guzmán BE; Hernández-Pérez JJ; Olvera-Cortés ME
    Behav Brain Res; 2017 Feb; 319():73-86. PubMed ID: 27845230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Memory formation: the sequence of biochemical events in the hippocampus and its connection to activity in other brain structures.
    Izquierdo I; Medina JH
    Neurobiol Learn Mem; 1997 Nov; 68(3):285-316. PubMed ID: 9398590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasticity, hippocampal place cells, and cognitive maps.
    Shapiro M
    Arch Neurol; 2001 Jun; 58(6):874-81. PubMed ID: 11405801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electroacupuncture in rats normalizes the diabetes-induced alterations in the septo-hippocampal cholinergic system.
    Protto V; Soligo M; De Stefano ME; Farioli-Vecchioli S; Marlier LNJL; Nisticò R; Manni L
    Hippocampus; 2019 Oct; 29(10):891-904. PubMed ID: 30870587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Septo-hippocampal interaction.
    Müller C; Remy S
    Cell Tissue Res; 2018 Sep; 373(3):565-575. PubMed ID: 29250747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Septo-hippocampal and other medial septum-diagonal band neurons: electrophysiological and pharmacological properties.
    Lamour Y; Dutar P; Jobert A
    Brain Res; 1984 Sep; 309(2):227-39. PubMed ID: 6148126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NMDA receptor antagonists decrease GABA outflow from the septum and increase acetylcholine outflow from the hippocampus: a microdialysis study.
    Giovannini MG; Mutolo D; Bianchi L; Michelassi A; Pepeu G
    J Neurosci; 1994 Mar; 14(3 Pt 1):1358-65. PubMed ID: 8120631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The pharmacology of amino-acid responses in septal neurons.
    Kumamoto E
    Prog Neurobiol; 1997 Jun; 52(3):197-259. PubMed ID: 9234453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cholinergic deficits in the septal-hippocampal pathway of the SAM-P/8 senescence accelerated mouse.
    Strong R; Reddy V; Morley JE
    Brain Res; 2003 Mar; 966(1):150-6. PubMed ID: 12646318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pharmacological and computational analysis of alpha-subunit preferential GABA(A) positive allosteric modulators on the rat septo-hippocampal activity.
    Ujfalussy B; Kiss T; Orbán G; Hoffmann WE; Erdi P; Hajós M
    Neuropharmacology; 2007 Mar; 52(3):733-43. PubMed ID: 17113111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.