These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 27231637)

  • 1. Accommodating volume-constant age-dependent optical (AVOCADO) model of the crystalline GRIN lens.
    Sheil CJ; Goncharov AV
    Biomed Opt Express; 2016 May; 7(5):1985-99. PubMed ID: 27231637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystalline lens paradoxes revisited: significance of age-related restructuring of the GRIN.
    Sheil CJ; Goncharov AV
    Biomed Opt Express; 2017 Sep; 8(9):4172-4180. PubMed ID: 28966856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An analytical method for predicting the geometrical and optical properties of the human lens under accommodation.
    Sheil CJ; Bahrami M; Goncharov AV
    Biomed Opt Express; 2014 May; 5(5):1649-63. PubMed ID: 24877022
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of shape and gradient refractive index in the accommodative changes of spherical aberration in nonhuman primate crystalline lenses.
    de Castro A; Birkenfeld J; Maceo B; Manns F; Arrieta E; Parel JM; Marcos S
    Invest Ophthalmol Vis Sci; 2013 Sep; 54(9):6197-207. PubMed ID: 23927893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive model of the gradient index of the human lens. II. Optics of the accommodating aging lens.
    Navarro R; Palos F; González LM
    J Opt Soc Am A Opt Image Sci Vis; 2007 Sep; 24(9):2911-20. PubMed ID: 17767263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Refractive index redistribution with accommodation based on finite volume-constant age-dependent mechanical modeling.
    Jiang MS; Xu XL; Yang T; Zhang XD; Li F
    Vision Res; 2019 Jul; 160():52-59. PubMed ID: 31095964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of the gradient refractive index and shape to the crystalline lens spherical aberration and astigmatism.
    Birkenfeld J; de Castro A; Ortiz S; Pascual D; Marcos S
    Vision Res; 2013 Jun; 86():27-34. PubMed ID: 23597582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alteration in refractive index profile during accommodation based on mechanical modelling.
    Bahrami M; Heidari A; Pierscionek BK
    Biomed Opt Express; 2016 Jan; 7(1):99-110. PubMed ID: 26819821
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contribution of shape and gradient refractive index to the spherical aberration of isolated human lenses.
    Birkenfeld J; de Castro A; Marcos S
    Invest Ophthalmol Vis Sci; 2014 Apr; 55(4):2599-607. PubMed ID: 24677101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystalline lens gradient refractive index distribution in the guinea pig.
    de Castro A; Martinez-Enriquez E; Perez-Merino P; Velasco-Ocaña M; Revuelta L; McFadden S; Marcos S
    Ophthalmic Physiol Opt; 2020 May; 40(3):308-315. PubMed ID: 32338776
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Geometry-invariant GRIN lens: iso-dispersive contours.
    Bahrami M; Goncharov AV
    Biomed Opt Express; 2012 Jul; 3(7):1684-700. PubMed ID: 22808438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Geometry-invariant gradient refractive index lens: analytical ray tracing.
    Bahrami M; Goncharov AV
    J Biomed Opt; 2012 May; 17(5):055001. PubMed ID: 22612122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Age-Dependent Changes in the Water Content and Optical Power of the In Vivo Mouse Lens Revealed by Multi-Parametric MRI and Optical Modeling.
    Pan X; Muir ER; Sellitto C; Wang K; Cheng C; Pierscionek B; Donaldson PJ; White TW
    Invest Ophthalmol Vis Sci; 2023 Apr; 64(4):24. PubMed ID: 37079314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical development in the murine eye lens of accelerated senescence-prone SAMP8 and senescence-resistant SAMR1 strains.
    Wang K; Pu Y; Chen L; Hoshino M; Uesugi K; Yagi N; Chen X; Usui Y; Hanashima A; Hashimoto K; Mohri S; Pierscionek BK
    Exp Eye Res; 2024 Apr; 241():109858. PubMed ID: 38467176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional reconstruction of the crystalline lens gradient index distribution from OCT imaging.
    de Castro A; Ortiz S; Gambra E; Siedlecki D; Marcos S
    Opt Express; 2010 Oct; 18(21):21905-17. PubMed ID: 20941090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thomas Young's investigations in gradient-index optics.
    Atchison DA; Charman WN
    Optom Vis Sci; 2011 May; 88(5):E580-4. PubMed ID: 21378590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single function crystalline lens capable of mimicking ciliary body accommodation.
    Jaimes-Nájera A; Gómez-Correa JE; Coello V; Pierscionek BK; Chávez-Cerda S
    Biomed Opt Express; 2020 Jul; 11(7):3699-3716. PubMed ID: 33014561
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lens internal curvature effects on age-related eye model and lens paradox.
    Giovanzana S; Evans T; Pierscionek B
    Biomed Opt Express; 2017 Nov; 8(11):4827-4837. PubMed ID: 29188084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Off-axis optical coherence tomography imaging of the crystalline lens to reconstruct the gradient refractive index using optical methods.
    de Castro A; Birkenfeld J; Heilman BM; Ruggeri M; Arrieta E; Parel JM; Manns F; Marcos S
    Biomed Opt Express; 2019 Jul; 10(7):3622-3634. PubMed ID: 31360608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in monkey crystalline lens spherical aberration during simulated accommodation in a lens stretcher.
    Maceo Heilman B; Manns F; de Castro A; Durkee H; Arrieta E; Marcos S; Parel JM
    Invest Ophthalmol Vis Sci; 2015 Feb; 56(3):1743-50. PubMed ID: 25670492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.