These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 27231642)
1. Development of perturbation Monte Carlo methods for polarized light transport in a discrete particle scattering model. Nguyen J; Hayakawa CK; Mourant JR; Venugopalan V; Spanier J Biomed Opt Express; 2016 May; 7(5):2051-66. PubMed ID: 27231642 [TBL] [Abstract][Full Text] [Related]
2. Analysis of relative error in perturbation Monte Carlo simulations of radiative transport. Parsanasab M; Hayakawa C; Spanier J; Shen Y; Venugopalan V J Biomed Opt; 2023 Jun; 28(6):065001. PubMed ID: 37293394 [TBL] [Abstract][Full Text] [Related]
3. Perturbation Monte Carlo methods for tissue structure alterations. Nguyen J; Hayakawa CK; Mourant JR; Spanier J Biomed Opt Express; 2013; 4(10):1946-63. PubMed ID: 24156056 [TBL] [Abstract][Full Text] [Related]
4. Propagation of polarized light in the biological tissue: a numerical study by polarized geometric Monte Carlo method. Zhang Y; Chen B; Li D Appl Opt; 2016 Apr; 55(10):2681-91. PubMed ID: 27139673 [TBL] [Abstract][Full Text] [Related]
5. Perturbation and differential Monte Carlo methods for measurement of optical properties in a layered epithelial tissue model. Seo I; You JS; Hayakawa CK; Venugopalan V J Biomed Opt; 2007; 12(1):014030. PubMed ID: 17343505 [TBL] [Abstract][Full Text] [Related]
6. Light wavelength effects in submicrometer phosphor materials using Mie scattering and Monte Carlo simulation. Liaparinos PF Med Phys; 2013 Oct; 40(10):101911. PubMed ID: 24089913 [TBL] [Abstract][Full Text] [Related]
7. Polarized light propagation in multiply scattering media exhibiting both linear birefringence and optical activity: Monte Carlo model and experimental methodology. Wood MF; Guo X; Vitkin IA J Biomed Opt; 2007; 12(1):014029. PubMed ID: 17343504 [TBL] [Abstract][Full Text] [Related]
8. Monte Carlo modeling of light propagation in highly scattering tissues--II: Comparison with measurements in phantoms. Flock ST; Wilson BC; Patterson MS IEEE Trans Biomed Eng; 1989 Dec; 36(12):1169-73. PubMed ID: 2606491 [TBL] [Abstract][Full Text] [Related]
9. Models of light propagation in human tissue applied to cancer diagnostics. Wilson RH; Mycek MA Technol Cancer Res Treat; 2011 Apr; 10(2):121-34. PubMed ID: 21381790 [TBL] [Abstract][Full Text] [Related]
10. Direct approach to compute Jacobians for diffuse optical tomography using perturbation Monte Carlo-based photon "replay". Yao R; Intes X; Fang Q Biomed Opt Express; 2018 Oct; 9(10):4588-4603. PubMed ID: 30319888 [TBL] [Abstract][Full Text] [Related]
11. Propagation of polarized light in birefringent turbid media: a Monte Carlo study. Wang X; Wang LV J Biomed Opt; 2002 Jul; 7(3):279-90. PubMed ID: 12175276 [TBL] [Abstract][Full Text] [Related]
12. Spatial and angular distribution of light incident on coatings using Mie-scattering Monte Carlo simulations. Yamada M; Butts MD; Kalla KK J Cosmet Sci; 2005; 56(3):193-204. PubMed ID: 16116524 [TBL] [Abstract][Full Text] [Related]
13. Simulation of light scattering from a colloidal droplet using a polarized Monte Carlo method: application to the time-shift technique. Li L; Stegmann PG; Rosenkranz S; Schäfer W; Tropea C Opt Express; 2019 Dec; 27(25):36388-36404. PubMed ID: 31873419 [TBL] [Abstract][Full Text] [Related]
14. Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms. Palmer GM; Ramanujam N Appl Opt; 2006 Feb; 45(5):1062-71. PubMed ID: 16512550 [TBL] [Abstract][Full Text] [Related]
15. Monte Carlo analysis of single fiber reflectance spectroscopy: photon path length and sampling depth. Kanick SC; Robinson DJ; Sterenborg HJ; Amelink A Phys Med Biol; 2009 Nov; 54(22):6991-7008. PubMed ID: 19887712 [TBL] [Abstract][Full Text] [Related]
16. Experimental validation of Monte Carlo modeling of fluorescence in tissues in the UV-visible spectrum. Liu Q; Zhu C; Ramanujam N J Biomed Opt; 2003 Apr; 8(2):223-36. PubMed ID: 12683848 [TBL] [Abstract][Full Text] [Related]
17. Scattering direction sampling methods for polarized Monte Carlo simulation of oceanic lidar. He H; Shi M; Tang J; Wu S Appl Opt; 2023 Aug; 62(23):6253-6263. PubMed ID: 37707094 [TBL] [Abstract][Full Text] [Related]
18. Terahertz polarimetric imaging of biological tissue: Monte Carlo modeling of signal contrast mechanisms due to Mie scattering. Xu K; Arbab MH Biomed Opt Express; 2024 Apr; 15(4):2328-2342. PubMed ID: 38633080 [TBL] [Abstract][Full Text] [Related]
19. Monitoring of tissue optical properties during thermal coagulation of ex vivo tissues. Nagarajan VK; Yu B Lasers Surg Med; 2016 Sep; 48(7):686-94. PubMed ID: 27250022 [TBL] [Abstract][Full Text] [Related]
20. Inverse Monte Carlo method in a multilayered tissue model for diffuse reflectance spectroscopy. Fredriksson I; Larsson M; Strömberg T J Biomed Opt; 2012 Apr; 17(4):047004. PubMed ID: 22559695 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]