BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

28 related articles for article (PubMed ID: 27231725)

  • 1. Development and Demonstration of Measurement-Time Efficient Methods for Impedance Spectroscopy of Electrode and Sensor Arrays.
    Cooper KR; Smith M; Johnson D
    Sensors (Basel); 2008 Mar; 8(3):1774-1796. PubMed ID: 27879792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimizing Nanoelectrode Arrays for Scalable Intracellular Electrophysiology.
    Abbott J; Ye T; Ham D; Park H
    Acc Chem Res; 2018 Mar; 51(3):600-608. PubMed ID: 29437381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On Using Residual Voltage to Estimate Electrode Model Parameters for Damage Detection.
    Krishnan A; Kelly SK
    IEEE Biomed Circuits Syst Conf; 2015 Oct; 2015():. PubMed ID: 27231725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Residual voltage as an ad-hoc indicator of electrode damage in biphasic electrical stimulation.
    Krishnan A; Forssell M; Du Z; Cui XT; Fedder GK; Kelly SK
    J Neural Eng; 2021 Aug; 18(4):. PubMed ID: 34400592
    [No Abstract]   [Full Text] [Related]  

  • 5. Bio-impedance characterization technique with implantable neural stimulator using biphasic current stimulus.
    Lo YK; Chang CW; Liu W
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():474-7. PubMed ID: 25569999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iridium oxide microelectrode arrays for in vitro stimulation of individual rat neurons from dissociated cultures.
    Eick S; Wallys J; Hofmann B; van Ooyen A; Schnakenberg U; Ingebrandt S; Offenhäusser A
    Front Neuroeng; 2009; 2():16. PubMed ID: 19949459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic impedance model of the skin-electrode interface for transcutaneous electrical stimulation.
    Vargas Luna JL; Krenn M; Cortés Ramírez JA; Mayr W
    PLoS One; 2015; 10(5):e0125609. PubMed ID: 25942010
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the cause and control of residual voltage generated by electrical stimulation of neural tissue.
    Krishnan A; Kelly SK
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():3899-902. PubMed ID: 23366780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and implantation of a minimally invasive wireless subretinal neurostimulator.
    Shire DB; Kelly SK; Chen J; Doyle P; Gingerich MD; Cogan SF; Drohan WA; Mendoza O; Theogarajan L; Wyatt JL; Rizzo JF
    IEEE Trans Biomed Eng; 2009 Oct; 56(10):2502-11. PubMed ID: 19403357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural stimulation and recording electrodes.
    Cogan SF
    Annu Rev Biomed Eng; 2008; 10():275-309. PubMed ID: 18429704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrical stimulation of excitable tissue: design of efficacious and safe protocols.
    Merrill DR; Bikson M; Jefferys JG
    J Neurosci Methods; 2005 Feb; 141(2):171-98. PubMed ID: 15661300
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 13.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 14.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 15.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 16.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 17.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.