These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 27231725)

  • 21. Feedback control of electrode offset voltage during functional electrical stimulation.
    Chu JU; Song KI; Shon A; Han S; Lee SH; Kang JY; Hwang D; Suh JK; Choi K; Youn I
    J Neurosci Methods; 2013 Aug; 218(1):55-71. PubMed ID: 23685268
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A multi-channel stimulator and electrode array providing a rotating current whirlpool for electrical stimulation of wounds.
    Petrofsky J; Suh HJ; Fish A; Hernandez V; Abdo A; Collins K; Mendoza E; Yang TN
    J Med Eng Technol; 2008; 32(5):371-84. PubMed ID: 18821415
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reduced electrode polarization at electrode and analyte interface in impedance spectroscopy using carbon paste and paper.
    Awasthi P; Das S
    Rev Sci Instrum; 2019 Dec; 90(12):124103. PubMed ID: 31893860
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of Twitch Responses During Current- or Voltage-Controlled Transcutaneous Neuromuscular Electrical Stimulation.
    Vargas Luna JL; Krenn M; Löfler S; Kern H; Cortés R JA; Mayr W
    Artif Organs; 2015 Oct; 39(10):868-75. PubMed ID: 26471138
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An in vitro model for investigating impedance changes with cell growth and electrical stimulation: implications for cochlear implants.
    Newbold C; Richardson R; Huang CQ; Milojevic D; Cowan R; Shepherd R
    J Neural Eng; 2004 Dec; 1(4):218-27. PubMed ID: 15876642
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Access resistance of stimulation electrodes as a function of electrode proximity to the retina.
    Majdi JA; Minnikanti S; Peixoto N; Agrawal A; Cohen ED
    J Neural Eng; 2015 Feb; 12(1):016006. PubMed ID: 25474329
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of electrode impedance on threshold voltage for transcranial electrical stimulation in motor evoked potential monitoring.
    Journée HL; Polak HE; de Kleuver M
    Med Biol Eng Comput; 2004 Jul; 42(4):557-61. PubMed ID: 15320467
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Acute voltage, charge, and energy thresholds as functions of electrode size for electrical stimulation of the canine heart.
    Lindemans FW; Zimmerman AN
    Cardiovasc Res; 1979 Jul; 13(7):383-91. PubMed ID: 487379
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A 100 electrode intracortical array: structural variability.
    Campbell PK; Jones KE; Normann RA
    Biomed Sci Instrum; 1990; 26():161-5. PubMed ID: 2334761
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Hybrid Bipolar Active Charge Balancing Technique with Adaptive Electrode Tissue Interface (ETI) Impedance Variations for Facial Paralysis Patients.
    Moganti GLK; Siva Praneeth VN; Vanjari SRK
    Sensors (Basel); 2022 Feb; 22(5):. PubMed ID: 35270902
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrode-Electrolyte Interface Modeling and Impedance Characterizing of Tripolar Concentric Ring Electrode.
    Nasrollaholhosseini SH; Mercier J; Fischer G; Besio WG
    IEEE Trans Biomed Eng; 2019 Oct; 66(10):2897-2905. PubMed ID: 30735984
    [TBL] [Abstract][Full Text] [Related]  

  • 32. PDMS based multielectrode arrays for superior in-vitro retinal stimulation and recording.
    Biswas S; Sikdar D; Das D; Mahadevappa M; Das S
    Biomed Microdevices; 2017 Aug; 19(4):75. PubMed ID: 28842772
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Crosstalk current measurements using multi-electrode arrays in saline.
    Tran N; Halpern M; Bai S; Skafidas E
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():3021-4. PubMed ID: 23366561
    [TBL] [Abstract][Full Text] [Related]  

  • 34. PEDOT-CNT coated electrodes stimulate retinal neurons at low voltage amplitudes and low charge densities.
    Samba R; Herrmann T; Zeck G
    J Neural Eng; 2015 Feb; 12(1):016014. PubMed ID: 25588201
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In vitro biocompatibility and electrical stability of thick-film platinum/gold alloy electrodes printed on alumina.
    Carnicer-Lombarte A; Lancashire HT; Vanhoestenberghe A
    J Neural Eng; 2017 Jun; 14(3):036012. PubMed ID: 28272027
    [TBL] [Abstract][Full Text] [Related]  

  • 36. PEDOT-CNT-Coated Low-Impedance, Ultra-Flexible, and Brain-Conformable Micro-ECoG Arrays.
    Castagnola E; Maiolo L; Maggiolini E; Minotti A; Marrani M; Maita F; Pecora A; Angotzi GN; Ansaldo A; Boffini M; Fadiga L; Fortunato G; Ricci D
    IEEE Trans Neural Syst Rehabil Eng; 2015 May; 23(3):342-50. PubMed ID: 25073174
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization and optimization of microelectrode arrays for in vivo nerve signal recording and stimulation.
    Blau A; Ziegler C; Heyer M; Endres F; Schwitzgebel G; Matthies T; Stieglitz T; Meyer JU; Göpel W
    Biosens Bioelectron; 1997; 12(9-10):883-92. PubMed ID: 9451781
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lobe based image reconstruction in Electrical Impedance Tomography.
    Schullcke B; Gong B; Krueger-Ziolek S; Tawhai M; Adler A; Mueller-Lisse U; Moeller K
    Med Phys; 2017 Feb; 44(2):426-436. PubMed ID: 28121374
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrochemical performance of platinum electrodes within the multi-electrode spiral nerve cuff.
    Rozman J; Pečlin P; Mehle A; Šala M
    Australas Phys Eng Sci Med; 2014 Sep; 37(3):525-33. PubMed ID: 24938675
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A reconstruction algorithm for electrical impedance tomography data collected on rectangular electrode arrays.
    Mueller JL; Isaacson D; Newell JC
    IEEE Trans Biomed Eng; 1999 Nov; 46(11):1379-86. PubMed ID: 10582423
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.