These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 27231804)

  • 1. Combining allele frequency uncertainty and population substructure corrections in forensic DNA calculations.
    Cowell R
    Forensic Sci Int Genet; 2016 Jul; 23():210-216. PubMed ID: 27231804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimating the number of contributors to forensic DNA mixtures: does maximum likelihood perform better than maximum allele count?
    Haned H; Pène L; Lobry JR; Dufour AB; Pontier D
    J Forensic Sci; 2011 Jan; 56(1):23-8. PubMed ID: 20840286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An illustration of the effect of various sources of uncertainty on DNA likelihood ratio calculations.
    Taylor D; Bright JA; Buckleton J; Curran J
    Forensic Sci Int Genet; 2014 Jul; 11():56-63. PubMed ID: 24667729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploratory data analysis for the interpretation of low template DNA mixtures.
    Haned H; Slooten K; Gill P
    Forensic Sci Int Genet; 2012 Dec; 6(6):762-74. PubMed ID: 22981542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Likelihood ratios for evaluating DNA matches obtained from a database search when there is substructure in the population.
    Spooner M; Stockmarr A
    Stat Med; 2019 Nov; 38(25):5010-5020. PubMed ID: 31436872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Statistical and population genetics issues of two Hungarian datasets from the aspect of DNA evidence interpretation.
    Szabolcsi Z; Farkas Z; Borbély A; Bárány G; Varga D; Heinrich A; Völgyi A; Pamjav H
    Forensic Sci Int Genet; 2015 Nov; 19():18-21. PubMed ID: 26036185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The efficacy of DNA mixture to mixture matching.
    Bright JA; Taylor D; Kerr Z; Buckleton J; Kruijver M
    Forensic Sci Int Genet; 2019 Jul; 41():64-71. PubMed ID: 30986620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The interpretation of single source and mixed DNA profiles.
    Taylor D; Bright JA; Buckleton J
    Forensic Sci Int Genet; 2013 Sep; 7(5):516-28. PubMed ID: 23948322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EuroForMix: An open source software based on a continuous model to evaluate STR DNA profiles from a mixture of contributors with artefacts.
    Bleka Ø; Storvik G; Gill P
    Forensic Sci Int Genet; 2016 Mar; 21():35-44. PubMed ID: 26720812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The multivariate Dirichlet-multinomial distribution and its application in forensic genetics to adjust for subpopulation effects using the θ-correction.
    Tvedebrink T; Eriksen PS; Morling N
    Theor Popul Biol; 2015 Nov; 105():24-32. PubMed ID: 26344785
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new framework to test parent-child and full sibling relationships with population substructure.
    Kooakachai M; LaBerge G; Santorico SA
    Forensic Sci Int; 2019 Dec; 305():110012. PubMed ID: 31759292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Encoding of low-quality DNA profiles as genotype probability matrices for improved profile comparisons, relatedness evaluation and database searches.
    Ryan K; Williams DG; Balding DJ
    Forensic Sci Int Genet; 2016 Nov; 25():227-239. PubMed ID: 27768939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Partial matches in heterogeneous offender databases do not call into question the validity of random match probability calculations.
    Budowle B; Baechtel FS; Chakraborty R
    Int J Legal Med; 2009 Jan; 123(1):59-63. PubMed ID: 18458929
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of wild card designations and rare alleles in forensic DNA database searches.
    Tvedebrink T; Bright JA; Buckleton JS; Curran JM; Morling N
    Forensic Sci Int Genet; 2015 May; 16():98-104. PubMed ID: 25576850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inclusion probability with dropout: an operational formula.
    Milot E; Courteau J; Crispino F; Mailly F
    Forensic Sci Int Genet; 2015 May; 16():71-76. PubMed ID: 25559642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The predictive value of the maximum likelihood estimator of the number of contributors to a DNA mixture.
    Haned H; Pène L; Sauvage F; Pontier D
    Forensic Sci Int Genet; 2011 Aug; 5(4):281-4. PubMed ID: 20488773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterizing the genetic structure of a forensic DNA database using a latent variable approach.
    Kruijver M
    Forensic Sci Int Genet; 2016 Jul; 23():130-149. PubMed ID: 27128695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FrogAncestryCalc: A standalone batch likelihood computation tool for ancestry inference panels catalogued in FROG-kb.
    Rajeevan H; Soundararajan U; Pakstis AJ; Kidd KK
    Forensic Sci Int Genet; 2020 May; 46():102237. PubMed ID: 31991337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human-Genetic Ancestry Inference and False Positives in Forensic Familial Searching.
    Fortier AL; Kim J; Rosenberg NA
    G3 (Bethesda); 2020 Aug; 10(8):2893-2902. PubMed ID: 32586848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinguishing between donors and their relatives in complex DNA mixtures with binary models.
    Slooten K
    Forensic Sci Int Genet; 2016 Mar; 21():95-109. PubMed ID: 26745184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.