These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 27231874)

  • 21. Induction of de novo volatile terpene biosynthesis via cytosolic and plastidial pathways by methyl jasmonate in foliage of Vitis vinifera L.
    Hampel D; Mosandl A; Wüst M
    J Agric Food Chem; 2005 Apr; 53(7):2652-7. PubMed ID: 15796607
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Allium sativum produces terpenes with fungistatic properties in response to infection with Sclerotium cepivorum.
    Pontin M; Bottini R; Burba JL; Piccoli P
    Phytochemistry; 2015 Jul; 115():152-60. PubMed ID: 25819001
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transcriptome and metabolome reprogramming in Vitis vinifera cv. Trincadeira berries upon infection with Botrytis cinerea.
    Agudelo-Romero P; Erban A; Rego C; Carbonell-Bejerano P; Nascimento T; Sousa L; Martínez-Zapater JM; Kopka J; Fortes AM
    J Exp Bot; 2015 Apr; 66(7):1769-85. PubMed ID: 25675955
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Responses of Vitis vinifera cv. Cabernet Sauvignon roots to the arbuscular mycorrhizal fungus Funneliformis mosseae and the plant growth-promoting rhizobacterium Ensifer meliloti include changes in volatile organic compounds.
    Velásquez A; Vega-Celedón P; Fiaschi G; Agnolucci M; Avio L; Giovannetti M; D'Onofrio C; Seeger M
    Mycorrhiza; 2020 Jan; 30(1):161-170. PubMed ID: 31974639
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chitosan improves development, and protects Vitis vinifera L. against Botrytis cinerea.
    Ait Barka E; Eullaffroy P; Clément C; Vernet G
    Plant Cell Rep; 2004 Mar; 22(8):608-14. PubMed ID: 14595516
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Arbuscular mycorrhizal symbiosis stimulates key genes of the phenylpropanoid biosynthesis and stilbenoid production in grapevine leaves in response to downy mildew and grey mould infection.
    Bruisson S; Maillot P; Schellenbaum P; Walter B; Gindro K; Deglène-Benbrahim L
    Phytochemistry; 2016 Nov; 131():92-99. PubMed ID: 27623505
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Screening
    Rahman MU; Hanif M; Wan R; Hou X; Ahmad B; Wang X
    Molecules; 2018 Dec; 24(1):. PubMed ID: 30577474
    [No Abstract]   [Full Text] [Related]  

  • 28. Ultraviolet-C priming of strawberry leaves against subsequent Mycosphaerella fragariae infection involves the action of reactive oxygen species, plant hormones, and terpenes.
    Xu Y; Charles MT; Luo Z; Mimee B; Tong Z; Véronneau PY; Roussel D; Rolland D
    Plant Cell Environ; 2019 Mar; 42(3):815-831. PubMed ID: 30481398
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bacteria and smoke-water extract improve growth and induce the synthesis of volatile defense mechanisms in Vitis vinifera L.
    Salomon MV; Piccoli P; Funes Pinter I; Stirk WA; Kulkarni M; van Staden J; Bottini R
    Plant Physiol Biochem; 2017 Nov; 120():1-9. PubMed ID: 28945988
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Proteome and transcript analysis of Vitis vinifera cell cultures subjected to Botrytis cinerea infection.
    Dadakova K; Havelkova M; Kurkova B; Tlolkova I; Kasparovsky T; Zdrahal Z; Lochman J
    J Proteomics; 2015 Apr; 119():143-53. PubMed ID: 25688916
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metabolomics reveals simultaneous influences of plant defence system and fungal growth in Botrytis cinerea-infected Vitis vinifera cv. Chardonnay berries.
    Hong YS; Martinez A; Liger-Belair G; Jeandet P; Nuzillard JM; Cilindre C
    J Exp Bot; 2012 Oct; 63(16):5773-85. PubMed ID: 22945941
    [TBL] [Abstract][Full Text] [Related]  

  • 32. ABA and GA3 increase carbon allocation in different organs of grapevine plants by inducing accumulation of non-structural carbohydrates in leaves, enhancement of phloem area and expression of sugar transporters.
    Murcia G; Pontin M; Reinoso H; Baraldi R; Bertazza G; Gómez-Talquenca S; Bottini R; Piccoli PN
    Physiol Plant; 2016 Mar; 156(3):323-37. PubMed ID: 26411544
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular analysis of the early interaction between the grapevine flower and Botrytis cinerea reveals that prompt activation of specific host pathways leads to fungus quiescence.
    Haile ZM; Pilati S; Sonego P; Malacarne G; Vrhovsek U; Engelen K; Tudzynski P; Zottini M; Baraldi E; Moser C
    Plant Cell Environ; 2017 Aug; 40(8):1409-1428. PubMed ID: 28239986
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Differential phenolic production in leaves of Vitis vinifera cv. Alvarinho affected with esca disease.
    Lima MRM; Felgueiras ML; Cunha A; Chicau G; Ferreres F; Dias ACP
    Plant Physiol Biochem; 2017 Mar; 112():45-52. PubMed ID: 28039815
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Photodynamic inactivation of Botrytis cinerea by an anionic porphyrin: an alternative pest management of grapevine.
    Ambrosini V; Issawi M; Sol V; Riou C
    Sci Rep; 2020 Oct; 10(1):17438. PubMed ID: 33060706
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dual Mode of Action of Grape Cane Extracts against Botrytis cinerea.
    De Bona GS; Adrian M; Negrel J; Chiltz A; Klinguer A; Poinssot B; Héloir MC; Angelini E; Vincenzi S; Bertazzon N
    J Agric Food Chem; 2019 May; 67(19):5512-5520. PubMed ID: 31008600
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effects of Pierce's disease on leaf and petiole hydraulic conductance in Vitis vinifera cv. Chardonnay.
    Choat B; Gambetta GA; Wada H; Shackel KA; Matthews MA
    Physiol Plant; 2009 Aug; 136(4):384-94. PubMed ID: 19470095
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhancement of in vitro growth and resistance to gray mould of Vitis vinifera co-cultured with plant growth-promoting rhizobacteria.
    Barka EA; Belarbi A; Hachet C; Nowak J; Audran JC
    FEMS Microbiol Lett; 2000 May; 186(1):91-5. PubMed ID: 10779718
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative Physiological and Metabolic Analysis Reveals a Complex Mechanism Involved in Drought Tolerance in Chickpea (Cicer arietinum L.) Induced by PGPR and PGRs.
    Khan N; Bano A; Rahman MA; Guo J; Kang Z; Babar MA
    Sci Rep; 2019 Feb; 9(1):2097. PubMed ID: 30765803
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Developmental and Metabolic Plasticity of White-Skinned Grape Berries in Response to Botrytis cinerea during Noble Rot.
    Blanco-Ulate B; Amrine KC; Collins TS; Rivero RM; Vicente AR; Morales-Cruz A; Doyle CL; Ye Z; Allen G; Heymann H; Ebeler SE; Cantu D
    Plant Physiol; 2015 Dec; 169(4):2422-43. PubMed ID: 26450706
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.