These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 27232051)

  • 41. The interplay of van der Waals and weak chemical forces in the adsorption of salicylic acid on NaCl(001).
    Chen W; Tegenkamp C; Pfnür H; Bredow T
    Phys Chem Chem Phys; 2009 Nov; 11(41):9337-40. PubMed ID: 19830314
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ethanol and Water Adsorption on Transition-Metal 13-Atom Clusters: A Density Functional Theory Investigation within van der Waals Corrections.
    Zibordi-Besse L; Tereshchuk P; Chaves AS; Da Silva JL
    J Phys Chem A; 2016 Jun; 120(24):4231-40. PubMed ID: 27269477
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ab initio and semi-empirical van der Waals study of graphene-boron nitride interaction from a molecular point of view.
    Caciuc V; Atodiresei N; Callsen M; Lazić P; Blügel S
    J Phys Condens Matter; 2012 Oct; 24(42):424214. PubMed ID: 23032913
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Water monomer interaction with gold nanoclusters from van der Waals density functional theory.
    Xue Y
    J Chem Phys; 2012 Jan; 136(2):024702. PubMed ID: 22260605
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Crystallographic, vibrational modes and optical properties data of α-DIPAB crystal.
    Alsaad A; Marin CM; Alaqtash N; Chao HW; Chang TH; Cheung CL; Ahmad A; Qattan IA; Sabirianov RF
    Data Brief; 2018 Feb; 16():667-684. PubMed ID: 29541664
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Modeling adsorption and reactions of organic molecules at metal surfaces.
    Liu W; Tkatchenko A; Scheffler M
    Acc Chem Res; 2014 Nov; 47(11):3369-77. PubMed ID: 24915492
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ab-initio adsorption study of chitosan on functionalized graphene: critical role of van der Waals interactions.
    Rahman R; Mazumdar D
    J Nanosci Nanotechnol; 2012 Mar; 12(3):2360-6. PubMed ID: 22755059
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Assessing Effects of van der Waals Corrections on Elasticity of Mg
    Peng Q; Ma X; Yang X; Zhao S; Yuan X; Chen X
    Materials (Basel); 2023 Sep; 16(19):. PubMed ID: 37834619
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Computational investigation of van der Waals corrections in the adsorption properties of molecules on the Cu(111) surface.
    Bartaquim EO; Bezerra RC; Bittencourt AFB; Da Silva JLF
    Phys Chem Chem Phys; 2022 Aug; 24(34):20294-20302. PubMed ID: 35979742
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Competing adsorption mechanisms of pyridine on Cu, Ag, Au, and Pt(110) surfaces.
    Malone W; von der Heyde J; Kara A
    J Chem Phys; 2018 Dec; 149(21):214703. PubMed ID: 30525717
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Electrically Tunable van der Waals Interaction in Graphene-Molecule Complex.
    Muruganathan M; Sun J; Imamura T; Mizuta H
    Nano Lett; 2015 Dec; 15(12):8176-80. PubMed ID: 26562749
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Performance of a Non-Local van der Waals Density Functional on the Dissociation of H2 on Metal Surfaces.
    Wijzenbroek M; Klein DM; Smits B; Somers MF; Kroes GJ
    J Phys Chem A; 2015 Dec; 119(50):12146-58. PubMed ID: 26258988
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Benchmarking van der Waals density functionals with experimental data: potential-energy curves for H2 molecules on Cu(111), (100) and (110) surfaces.
    Lee K; Berland K; Yoon M; Andersson S; Schröder E; Hyldgaard P; Lundqvist BI
    J Phys Condens Matter; 2012 Oct; 24(42):424213. PubMed ID: 23032859
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Adsorption of water and ethanol on noble and transition-metal substrates: a density functional investigation within van der Waals corrections.
    Freire RL; Kiejna A; Da Silva JL
    Phys Chem Chem Phys; 2016 Oct; 18(42):29526-29536. PubMed ID: 27747329
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Interlayer Interactions in van der Waals Heterostructures: Electron and Phonon Properties.
    Le NB; Huan TD; Woods LM
    ACS Appl Mater Interfaces; 2016 Mar; 8(9):6286-92. PubMed ID: 26885874
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Density functional for van der Waals forces accounts for hydrogen bond in benchmark set of water hexamers.
    Kelkkanen AK; Lundqvist BI; Nørskov JK
    J Chem Phys; 2009 Jul; 131(4):046102. PubMed ID: 19655929
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Adsorption of large hydrocarbons on coinage metals: a van der Waals density functional study.
    Björk J; Stafström S
    Chemphyschem; 2014 Sep; 15(13):2851-8. PubMed ID: 25044659
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Study of van der Waals bonding and interactions in metal organic framework materials.
    Zuluaga S; Canepa P; Tan K; Chabal YJ; Thonhauser T
    J Phys Condens Matter; 2014 Apr; 26(13):133002. PubMed ID: 24613989
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Density, structure, and dynamics of water: the effect of van der Waals interactions.
    Wang J; Román-Pérez G; Soler JM; Artacho E; Fernández-Serra MV
    J Chem Phys; 2011 Jan; 134(2):024516. PubMed ID: 21241129
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Spectroscopic characterization of van der Waals interactions in a metal organic framework with unsaturated metal centers: MOF-74-Mg.
    Nijem N; Canepa P; Kong L; Wu H; Li J; Thonhauser T; Chabal YJ
    J Phys Condens Matter; 2012 Oct; 24(42):424203. PubMed ID: 23032253
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.