These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 27232075)

  • 1. Comparing the Accuracy and Speed of Manual and Tracking Methods of Measuring Hearing Thresholds.
    Poling GL; Kunnel TJ; Dhar S
    Ear Hear; 2016; 37(5):e336-40. PubMed ID: 27232075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measuring Temporal Resolution (Release of Masking) with a Hughson-Westlake Up-Down Instead of a Békèsy-Tracking Procedure.
    Rhebergen KS; van Esch TE; Dreschler WA
    J Am Acad Audiol; 2015 Jun; 26(6):563-71. PubMed ID: 26134723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-frequency pure-tone audiometry in children: a test-retest reliability study relative to ototoxic criteria.
    Beahan N; Kei J; Driscoll C; Charles B; Khan A
    Ear Hear; 2012; 33(1):104-11. PubMed ID: 21760512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Behavioral hearing thresholds between 0.125 and 20 kHz using depth-compensated ear simulator calibration.
    Lee J; Dhar S; Abel R; Banakis R; Grolley E; Lee J; Zecker S; Siegel J
    Ear Hear; 2012; 33(3):315-29. PubMed ID: 22436407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of cochlear hearing disorders: normative distortion product otoacoustic emission measurements.
    Mills DM; Feeney MP; Gates GA
    Ear Hear; 2007 Dec; 28(6):778-92. PubMed ID: 17982366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Maturation of the occlusion effect: a bone conduction auditory steady state response study in infants and adults with normal hearing.
    Small SA; Hu N
    Ear Hear; 2011; 32(6):708-19. PubMed ID: 21617531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Online Machine Learning Audiometry.
    Barbour DL; Howard RT; Song XD; Metzger N; Sukesan KA; DiLorenzo JC; Snyder BRD; Chen JY; Degen EA; Buchbinder JM; Heisey KL
    Ear Hear; 2019; 40(4):918-926. PubMed ID: 30358656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adapting Audiology Procedures During the Pandemic: Validity and Efficacy of Testing Outside a Sound Booth.
    Serpanos YC; Hobbs M; Nunez K; Gambino L; Butler J
    Am J Audiol; 2022 Mar; 31(1):91-100. PubMed ID: 34965363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Test-retest reliability of in situ unaided thresholds in adults.
    Smith-Olinde L; Nicholson N; Chivers C; Highley P; Williams DK
    Am J Audiol; 2006 Jun; 15(1):75-80. PubMed ID: 16803794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of conductive hearing loss using air conduction tests alone: reliability and validity of an automatic test battery.
    Convery E; Keidser G; Seeto M; Freeston K; Zhou D; Dillon H
    Ear Hear; 2014; 35(1):e1-8. PubMed ID: 24080948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast, Continuous Audiogram Estimation Using Machine Learning.
    Song XD; Wallace BM; Gardner JR; Ledbetter NM; Weinberger KQ; Barbour DL
    Ear Hear; 2015; 36(6):e326-35. PubMed ID: 26258575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reliability of hearing thresholds: computer-automated testing with ER-4B Canal Phone earphones.
    Henry JA; Flick CL; Gilbert A; Ellingson RM; Fausti SA
    J Rehabil Res Dev; 2001; 38(5):567-81. PubMed ID: 11732834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hearing assessment-reliability, accuracy, and efficiency of automated audiometry.
    Swanepoel de W; Mngemane S; Molemong S; Mkwanazi H; Tutshini S
    Telemed J E Health; 2010 Jun; 16(5):557-63. PubMed ID: 20575723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clinical validation of the AMTAS automated audiometer.
    Eikelboom RH; Swanepoel de W; Motakef S; Upson GS
    Int J Audiol; 2013 May; 52(5):342-9. PubMed ID: 23548148
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transient-evoked otoacoustic emissions in a group of professional singers who have normal pure-tone hearing thresholds.
    Hamdan AL; Abouchacra KS; Zeki Al Hazzouri AG; Zaytoun G
    Ear Hear; 2008 Jun; 29(3):360-77. PubMed ID: 18382377
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A fast method for measuring psychophysical thresholds across the cochlear implant array.
    Bierer JA; Bierer SM; Kreft HA; Oxenham AJ
    Trends Hear; 2015 Feb; 19():. PubMed ID: 25656797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hearing Tests on Mobile Devices: Evaluation of the Reference Sound Level by Means of Biological Calibration.
    Masalski M; Kipiński L; Grysiński T; Kręcicki T
    J Med Internet Res; 2016 May; 18(5):e130. PubMed ID: 27241793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Repeatability of high-frequency distortion-product otoacoustic emissions in normal-hearing adults.
    Dreisbach LE; Long KM; Lees SE
    Ear Hear; 2006 Oct; 27(5):466-79. PubMed ID: 16957498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of individual loudness functions by trisection of loudness ranges.
    Villchur E; Killion MC
    Ear Hear; 2008 Oct; 29(5):693-703. PubMed ID: 18769270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reliability and accuracy of a method of adjustment for self-measurement of auditory thresholds.
    Van Tasell DJ; Folkeard P
    Otol Neurotol; 2013 Jan; 34(1):9-15. PubMed ID: 23202154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.