These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
355 related articles for article (PubMed ID: 27232271)
1. Cellulose Nanofibril Film as a Piezoelectric Sensor Material. Rajala S; Siponkoski T; Sarlin E; Mettänen M; Vuoriluoto M; Pammo A; Juuti J; Rojas OJ; Franssila S; Tuukkanen S ACS Appl Mater Interfaces; 2016 Jun; 8(24):15607-14. PubMed ID: 27232271 [TBL] [Abstract][Full Text] [Related]
2. Hydrophobization and smoothing of cellulose nanofibril films by cellulose ester coatings. Willberg-Keyriläinen P; Vartiainen J; Pelto J; Ropponen J Carbohydr Polym; 2017 Aug; 170():160-165. PubMed ID: 28521982 [TBL] [Abstract][Full Text] [Related]
3. Highly Transparent and Toughened Poly(methyl methacrylate) Nanocomposite Films Containing Networks of Cellulose Nanofibrils. Dong H; Sliozberg YR; Snyder JF; Steele J; Chantawansri TL; Orlicki JA; Walck SD; Reiner RS; Rudie AW ACS Appl Mater Interfaces; 2015 Nov; 7(45):25464-72. PubMed ID: 26513136 [TBL] [Abstract][Full Text] [Related]
4. Cellulose Nanofibril Formulations Incorporating a Low-Molecular-Weight Alginate Oligosaccharide Modify Bacterial Biofilm Development. Jack AA; Nordli HR; Powell LC; Farnell DJJ; Pukstad B; Rye PD; Thomas DW; Chinga-Carrasco G; Hill KE Biomacromolecules; 2019 Aug; 20(8):2953-2961. PubMed ID: 31251598 [TBL] [Abstract][Full Text] [Related]
5. High output flexible polyvinylidene fluoride based piezoelectric device incorporating cellulose nanofibers/BaTiO Zhang J; Song X; Cao S; Zhu Q; Chen X; Li D; Yuan Q Int J Biol Macromol; 2024 Aug; 275(Pt 2):133088. PubMed ID: 38880446 [TBL] [Abstract][Full Text] [Related]
6. Cellulose nanofibril based graft conjugated polymer films act as a chemosensor for nitroaromatic. Niu Q; Gao K; Wu W Carbohydr Polym; 2014 Sep; 110():47-52. PubMed ID: 24906727 [TBL] [Abstract][Full Text] [Related]
7. TEMPO-oxidized nanocellulose films derived from coconut residues: Physicochemical, mechanical and electrical properties. Hassan SH; Velayutham TS; Chen YW; Lee HV Int J Biol Macromol; 2021 Jun; 180():392-402. PubMed ID: 33737185 [TBL] [Abstract][Full Text] [Related]
8. Electric poling and electromechanical characterization of 0.1-mm-thick sensor films and 0.2-mm-thick cable layers from piezoelectric poly(vinylidene fluoride-trifluoroethylene). Wegener M; Gerhard-Multhaupt R IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Jul; 50(7):921-31. PubMed ID: 12894925 [TBL] [Abstract][Full Text] [Related]
10. Swelling and Free-Volume Characteristics of TEMPO-Oxidized Cellulose Nanofibril Films. Torstensen JØ; Liu M; Jin SA; Deng L; Hawari AI; Syverud K; Spontak RJ; Gregersen ØW Biomacromolecules; 2018 Mar; 19(3):1016-1025. PubMed ID: 29420013 [TBL] [Abstract][Full Text] [Related]
11. Enhancing piezoelectric properties of bacterial cellulose films by incorporation of MnFe Sriplai N; Mangayil R; Pammo A; Santala V; Tuukkanen S; Pinitsoontorn S Carbohydr Polym; 2020 Mar; 231():115730. PubMed ID: 31888809 [TBL] [Abstract][Full Text] [Related]
12. Effect of Cellulose Nanofibrils and TEMPO-mediated Oxidized Cellulose Nanofibrils on the Physical and Mechanical Properties of Poly(vinylidene fluoride)/Cellulose Nanofibril Composites. Barnes E; Jefcoat JA; Alberts EM; McKechnie MA; Peel HR; Buchanan JP; Weiss CA; Klaus KL; Mimun LC; Warner CM Polymers (Basel); 2019 Jun; 11(7):. PubMed ID: 31252644 [TBL] [Abstract][Full Text] [Related]
13. Polyion complex hydrogels from chemically modified cellulose nanofibrils: Structure-function relationship and potential for controlled and pH-responsive release of doxorubicin. Hujaya SD; Lorite GS; Vainio SJ; Liimatainen H Acta Biomater; 2018 Jul; 75():346-357. PubMed ID: 29885527 [TBL] [Abstract][Full Text] [Related]
14. Flexible cellulose-based piezoelectric composite membrane involving PVDF and BaTiO Li M; Jiang B; Cao S; Song X; Zhang Y; Huang L; Yuan Q RSC Adv; 2023 Mar; 13(15):10204-10214. PubMed ID: 37006353 [TBL] [Abstract][Full Text] [Related]
15. Bioinspired lubricating films of cellulose nanofibrils and hyaluronic acid. Valle-Delgado JJ; Johansson LS; Österberg M Colloids Surf B Biointerfaces; 2016 Feb; 138():86-93. PubMed ID: 26674836 [TBL] [Abstract][Full Text] [Related]
16. Preparation and characterization of thermoplastic starch and cellulose nanofibers as green nanocomposites: Extrusion processing. Ghanbari A; Tabarsa T; Ashori A; Shakeri A; Mashkour M Int J Biol Macromol; 2018 Jun; 112():442-447. PubMed ID: 29410268 [TBL] [Abstract][Full Text] [Related]
17. The influence of residual pectin composition and content on nanocellulose films from ramie fibers: Micro-nano structure and physical properties. Luo L; Yu W; Yi Y; Xing C; Zeng L; Yang Y; Wang H; Tang Z; Tan Z Int J Biol Macromol; 2023 Aug; 247():125812. PubMed ID: 37453632 [TBL] [Abstract][Full Text] [Related]
18. Humidity and multiscale structure govern mechanical properties and deformation modes in films of native cellulose nanofibrils. Benítez AJ; Torres-Rendon J; Poutanen M; Walther A Biomacromolecules; 2013 Dec; 14(12):4497-506. PubMed ID: 24245557 [TBL] [Abstract][Full Text] [Related]
19. Alignment Effect on the Piezoelectric Properties of Ultrathin Cellulose Nanofiber Films. Zhai L; Kim HC; Kim JW; Kim J ACS Appl Bio Mater; 2020 Jul; 3(7):4329-4334. PubMed ID: 35025432 [TBL] [Abstract][Full Text] [Related]
20. Highly tunable bioadhesion and optics of 3D printable PNIPAm/cellulose nanofibrils hydrogels. Sun X; Tyagi P; Agate S; McCord MG; Lucia LA; Pal L Carbohydr Polym; 2020 Apr; 234():115898. PubMed ID: 32070518 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]