These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 27232307)
1. A new composite scaffold of bioactive glass nanoparticles/graphene: Synchronous improvements of cytocompatibility and mechanical property. Fan Z; Wang J; Liu F; Nie Y; Ren L; Liu B Colloids Surf B Biointerfaces; 2016 Sep; 145():438-446. PubMed ID: 27232307 [TBL] [Abstract][Full Text] [Related]
2. Response of mouse bone marrow mesenchymal stem cells to graphene-containing grid-like bioactive glass scaffolds produced by robocasting. Deliormanlı AM; Türk M; Atmaca H J Biomater Appl; 2018 Oct; 33(4):488-500. PubMed ID: 30249149 [TBL] [Abstract][Full Text] [Related]
3. A Dual Role of Graphene Oxide Sheet Deposition on Titanate Nanowire Scaffolds for Osteo-implantation: Mechanical Hardener and Surface Activity Regulator. Dong W; Hou L; Li T; Gong Z; Huang H; Wang G; Chen X; Li X Sci Rep; 2015 Dec; 5():18266. PubMed ID: 26687002 [TBL] [Abstract][Full Text] [Related]
4. Electrically conductive borate-based bioactive glass scaffolds for bone tissue engineering applications. Turk M; Deliormanlı AM J Biomater Appl; 2017 Jul; 32(1):28-39. PubMed ID: 28541125 [TBL] [Abstract][Full Text] [Related]
5. Nanohydroxyapatite/poly(ester urethane) scaffold for bone tissue engineering. Boissard CI; Bourban PE; Tami AE; Alini M; Eglin D Acta Biomater; 2009 Nov; 5(9):3316-27. PubMed ID: 19442765 [TBL] [Abstract][Full Text] [Related]
6. Osteoinductive silk fibroin/titanium dioxide/hydroxyapatite hybrid scaffold for bone tissue engineering. Kim JH; Kim DK; Lee OJ; Ju HW; Lee JM; Moon BM; Park HJ; Kim DW; Lee JH; Park CH Int J Biol Macromol; 2016 Jan; 82():160-7. PubMed ID: 26257379 [TBL] [Abstract][Full Text] [Related]
7. Preparation, in vitro degradability, cytotoxicity, and in vivo biocompatibility of porous hydroxyapatite whisker-reinforced poly(L-lactide) biocomposite scaffolds. Xie L; Yu H; Yang W; Zhu Z; Yue L J Biomater Sci Polym Ed; 2016; 27(6):505-28. PubMed ID: 26873015 [TBL] [Abstract][Full Text] [Related]
8. Graphene nanosheets as reinforcement and cell-instructive material in soft tissue scaffolds. Tiwari S; Patil R; Dubey SK; Bahadur P Adv Colloid Interface Sci; 2020 Jul; 281():102167. PubMed ID: 32361407 [TBL] [Abstract][Full Text] [Related]
9. Development and physiochemical assessment of graphene-bioactive glass-P(3HB- Abdul Rahim MAH; Samsurrijal SF; Abdullah AA; Mohd Noor SNF Biomed Mater; 2024 Jun; 19(4):. PubMed ID: 38857599 [TBL] [Abstract][Full Text] [Related]
10. Enhanced bone formation in electrospun poly(L-lactic-co-glycolic acid)-tussah silk fibroin ultrafine nanofiber scaffolds incorporated with graphene oxide. Shao W; He J; Sang F; Wang Q; Chen L; Cui S; Ding B Mater Sci Eng C Mater Biol Appl; 2016 May; 62():823-34. PubMed ID: 26952489 [TBL] [Abstract][Full Text] [Related]
11. New approach to bone tissue engineering: simultaneous application of hydroxyapatite and bioactive glass coated on a poly(L-lactic acid) scaffold. Dinarvand P; Seyedjafari E; Shafiee A; Jandaghi AB; Doostmohammadi A; Fathi MH; Farhadian S; Soleimani M ACS Appl Mater Interfaces; 2011 Nov; 3(11):4518-24. PubMed ID: 21999213 [TBL] [Abstract][Full Text] [Related]
12. Taking Hydroxyapatite-Coated Titanium Implants Two Steps Forward: Surface Modification Using Graphene Mesolayers and a Hydroxyapatite-Reinforced Polymeric Scaffold. Fathi AM; Ahmed MK; Afifi M; Menazea AA; Uskoković V ACS Biomater Sci Eng; 2021 Jan; 7(1):360-372. PubMed ID: 33337854 [TBL] [Abstract][Full Text] [Related]
13. Reduced graphene oxide-coated hydroxyapatite composites stimulate spontaneous osteogenic differentiation of human mesenchymal stem cells. Lee JH; Shin YC; Jin OS; Kang SH; Hwang YS; Park JC; Hong SW; Han DW Nanoscale; 2015 Jul; 7(27):11642-51. PubMed ID: 26098486 [TBL] [Abstract][Full Text] [Related]
14. Coaxial electrospun aligned tussah silk fibroin nanostructured fiber scaffolds embedded with hydroxyapatite-tussah silk fibroin nanoparticles for bone tissue engineering. Shao W; He J; Sang F; Ding B; Chen L; Cui S; Li K; Han Q; Tan W Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():342-51. PubMed ID: 26478319 [TBL] [Abstract][Full Text] [Related]
15. Fabrication and in vitro characterization of bioactive glass composite scaffolds for bone regeneration. Poh PS; Hutmacher DW; Stevens MM; Woodruff MA Biofabrication; 2013 Dec; 5(4):045005. PubMed ID: 24192136 [TBL] [Abstract][Full Text] [Related]
16. Synthesis and electrospinning of ε-polycaprolactone-bioactive glass hybrid biomaterials via a sol-gel process. Allo BA; Rizkalla AS; Mequanint K Langmuir; 2010 Dec; 26(23):18340-8. PubMed ID: 21050002 [TBL] [Abstract][Full Text] [Related]
17. Surface nanoscale patterning of bioactive glass to support cellular growth and differentiation. Lei B; Chen X; Wang Y; Zhao N; Du C; Fang L J Biomed Mater Res A; 2010 Sep; 94(4):1091-9. PubMed ID: 20694976 [TBL] [Abstract][Full Text] [Related]
18. Effect of negatively charged cellulose nanofibers on the dispersion of hydroxyapatite nanoparticles for scaffolds in bone tissue engineering. Park M; Lee D; Shin S; Hyun J Colloids Surf B Biointerfaces; 2015 Jun; 130():222-8. PubMed ID: 25910635 [TBL] [Abstract][Full Text] [Related]
19. Hierarchical mesoporous bioactive glass/alginate composite scaffolds fabricated by three-dimensional plotting for bone tissue engineering. Luo Y; Wu C; Lode A; Gelinsky M Biofabrication; 2013 Mar; 5(1):015005. PubMed ID: 23228963 [TBL] [Abstract][Full Text] [Related]
20. Biomimetic Mineralized Hierarchical Graphene Oxide/Chitosan Scaffolds with Adsorbability for Immobilization of Nanoparticles for Biomedical Applications. Xie C; Lu X; Han L; Xu J; Wang Z; Jiang L; Wang K; Zhang H; Ren F; Tang Y ACS Appl Mater Interfaces; 2016 Jan; 8(3):1707-17. PubMed ID: 26710937 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]