These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 27232642)

  • 1. New Insights on the Mechanism of Cyclization in Chromophore Maturation of Wild-Type Green Fluorescence Protein: A Computational Study.
    Ma Y; Zhang H; Sun Q; Smith SC
    J Phys Chem B; 2016 Jun; 120(24):5386-94. PubMed ID: 27232642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical studies of chromophore maturation in the wild-type green fluorescent protein: ONIOM(DFT:MM) investigation of the mechanism of cyclization.
    Ma Y; Sun Q; Li Z; Yu JG; Smith SC
    J Phys Chem B; 2012 Feb; 116(4):1426-36. PubMed ID: 22212013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mechanism of cyclization in chromophore maturation of green fluorescent protein: a theoretical study.
    Ma Y; Sun Q; Zhang H; Peng L; Yu JG; Smith SC
    J Phys Chem B; 2010 Jul; 114(29):9698-705. PubMed ID: 20593847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular Modeling Clarifies the Mechanism of Chromophore Maturation in the Green Fluorescent Protein.
    Grigorenko BL; Krylov AI; Nemukhin AV
    J Am Chem Soc; 2017 Aug; 139(30):10239-10249. PubMed ID: 28675933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mechanism of oxidation in chromophore maturation of wild-type green fluorescent protein: a theoretical study.
    Ma Y; Sun Q; Smith SC
    Phys Chem Chem Phys; 2017 May; 19(20):12942-12952. PubMed ID: 28480935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Base catalysis of chromophore formation in Arg96 and Glu222 variants of green fluorescent protein.
    Sniegowski JA; Lappe JW; Patel HN; Huffman HA; Wachter RM
    J Biol Chem; 2005 Jul; 280(28):26248-55. PubMed ID: 15888441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transient low-barrier hydrogen bond in the photoactive state of green fluorescent protein.
    Nadal-Ferret M; Gelabert R; Moreno M; Lluch JM
    Phys Chem Chem Phys; 2015 Dec; 17(46):30876-88. PubMed ID: 25953497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the Driving Force of the Excited-State Proton Shuttle in the Green Fluorescent Protein: A Time-Dependent Density Functional Theory (TD-DFT) Study of the Intrinsic Reaction Path.
    Petrone A; Cimino P; Donati G; Hratchian HP; Frisch MJ; Rega N
    J Chem Theory Comput; 2016 Oct; 12(10):4925-4933. PubMed ID: 27571168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Maturation efficiency, trypsin sensitivity, and optical properties of Arg96, Glu222, and Gly67 variants of green fluorescent protein.
    Sniegowski JA; Phail ME; Wachter RM
    Biochem Biophys Res Commun; 2005 Jul; 332(3):657-63. PubMed ID: 15894286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrafast proton shuttling in Psammocora cyan fluorescent protein.
    Kennis JT; van Stokkum IH; Peterson DS; Pandit A; Wachter RM
    J Phys Chem B; 2013 Sep; 117(38):11134-43. PubMed ID: 23534404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A molecular mechanics and database analysis of the structural preorganization and activation of the chromophore-containing hexapeptide fragment in green fluorescent protein.
    Branchini BR; Lusins JO; Zimmer M
    J Biomol Struct Dyn; 1997 Feb; 14(4):441-8. PubMed ID: 9172644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reaction progress of chromophore biogenesis in green fluorescent protein.
    Zhang L; Patel HN; Lappe JW; Wachter RM
    J Am Chem Soc; 2006 Apr; 128(14):4766-72. PubMed ID: 16594713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping proton wires in proteins: carbonic anhydrase and GFP chromophore biosynthesis.
    Shinobu A; Agmon N
    J Phys Chem A; 2009 Jul; 113(26):7253-66. PubMed ID: 19388648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Defining the role of arginine 96 in green fluorescent protein fluorophore biosynthesis.
    Wood TI; Barondeau DP; Hitomi C; Kassmann CJ; Tainer JA; Getzoff ED
    Biochemistry; 2005 Dec; 44(49):16211-20. PubMed ID: 16331981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The thermal isomerization of the GFP chromophore: A computational study.
    Wang D; Merz T; van Gunsteren WF
    Phys Chem Chem Phys; 2010 Sep; 12(36):11051-61. PubMed ID: 20668775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The case of the missing ring: radical cleavage of a carbon-carbon bond and implications for GFP chromophore biosynthesis.
    Barondeau DP; Kassmann CJ; Tainer JA; Getzoff ED
    J Am Chem Soc; 2007 Mar; 129(11):3118-26. PubMed ID: 17326633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular modeling of green fluorescent protein: structural effects of chromophore deprotonation.
    Patnaik SS; Trohalaki S; Pachter R
    Biopolymers; 2004 Dec; 75(6):441-52. PubMed ID: 15497152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GFP Loss-of-Function Mutations in Arabidopsis thaliana.
    Fu JL; Kanno T; Liang SC; Matzke AJ; Matzke M
    G3 (Bethesda); 2015 Jul; 5(9):1849-55. PubMed ID: 26153075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Solvation on Electron Detachment and Excitation Energies of a Green Fluorescent Protein Chromophore Variant.
    Bose S; Chakrabarty S; Ghosh D
    J Phys Chem B; 2016 May; 120(19):4410-20. PubMed ID: 27116477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. QM/MM study on the reaction mechanism of O6-alkylguanine-DNA alkyltransferase.
    Hou Q; Du L; Gao J; Liu Y; Liu C
    J Phys Chem B; 2010 Nov; 114(46):15296-300. PubMed ID: 21038902
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.