These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 27233038)

  • 1. The FBPase Encoding Gene glpX Is Required for Gluconeogenesis, Bacterial Proliferation and Division In Vivo of Mycobacterium marinum.
    Tong J; Meng L; Wang X; Liu L; Lyu L; Wang C; Li Y; Gao Q; Yang C; Niu C
    PLoS One; 2016; 11(5):e0156663. PubMed ID: 27233038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. glpx Gene in Mycobacterium tuberculosis Is Required for In Vitro Gluconeogenic Growth and In Vivo Survival.
    Gutka HJ; Wang Y; Franzblau SG; Movahedzadeh F
    PLoS One; 2015; 10(9):e0138436. PubMed ID: 26397812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two enzymes with redundant fructose bisphosphatase activity sustain gluconeogenesis and virulence in Mycobacterium tuberculosis.
    Ganapathy U; Marrero J; Calhoun S; Eoh H; de Carvalho LPS; Rhee K; Ehrt S
    Nat Commun; 2015 Aug; 6():7912. PubMed ID: 26258286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Mycobacterium tuberculosis Rv1099c gene encodes a GlpX-like class II fructose 1,6-bisphosphatase.
    Movahedzadeh F; Rison SC; Wheeler PR; Kendall SL; Larson TJ; Stoker NG
    Microbiology (Reading); 2004 Oct; 150(Pt 10):3499-505. PubMed ID: 15470127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Gene function of glpX in mycobacterium].
    Wang X; Ren D; Gao Q; Niu C
    Wei Sheng Wu Xue Bao; 2014 Mar; 54(3):285-91. PubMed ID: 24984520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymatic Characterization of Fructose 1,6-Bisphosphatase II from Francisella tularensis, an Essential Enzyme for Pathogenesis.
    Gutka HJ; Wolf NM; Bondoc JMG; Movahedzadeh F
    Appl Biochem Biotechnol; 2017 Dec; 183(4):1439-1454. PubMed ID: 28547120
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic evidence identifying the true gluconeogenic fructose-1,6-bisphosphatase in Thermococcus kodakaraensis and other hyperthermophiles.
    Sato T; Imanaka H; Rashid N; Fukui T; Atomi H; Imanaka T
    J Bacteriol; 2004 Sep; 186(17):5799-807. PubMed ID: 15317785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. glpX gene of Mycobacterium tuberculosis: heterologous expression, purification, and enzymatic characterization of the encoded fructose 1,6-bisphosphatase II.
    Gutka HJ; Rukseree K; Wheeler PR; Franzblau SG; Movahedzadeh F
    Appl Biochem Biotechnol; 2011 Aug; 164(8):1376-89. PubMed ID: 21451980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvement of L-phenylalanine production from glycerol by recombinant Escherichia coli strains: the role of extra copies of glpK, glpX, and tktA genes.
    Gottlieb K; Albermann C; Sprenger GA
    Microb Cell Fact; 2014 Jul; 13(1):96. PubMed ID: 25012491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and biochemical characterization of the type II fructose-1,6-bisphosphatase GlpX from Escherichia coli.
    Brown G; Singer A; Lunin VV; Proudfoot M; Skarina T; Flick R; Kochinyan S; Sanishvili R; Joachimiak A; Edwards AM; Savchenko A; Yakunin AF
    J Biol Chem; 2009 Feb; 284(6):3784-92. PubMed ID: 19073594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new level of regulation in gluconeogenesis: metabolic state modulates the intracellular localization of aldolase B and its interaction with liver fructose-1,6-bisphosphatase.
    Droppelmann CA; Sáez DE; Asenjo JL; Yáñez AJ; García-Rocha M; Concha II; Grez M; Guinovart JJ; Slebe JC
    Biochem J; 2015 Dec; 472(2):225-37. PubMed ID: 26417114
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Defining the Metabolic Pathways and Host-Derived Carbon Substrates Required for Francisella tularensis Intracellular Growth.
    Radlinski LC; Brunton J; Steele S; Taft-Benz S; Kawula TH
    mBio; 2018 Nov; 9(6):. PubMed ID: 30459188
    [No Abstract]   [Full Text] [Related]  

  • 13. Characterization of fructose 1,6-bisphosphatase and sedoheptulose 1,7-bisphosphatase from the facultative ribulose monophosphate cycle methylotroph Bacillus methanolicus.
    Stolzenberger J; Lindner SN; Persicke M; Brautaset T; Wendisch VF
    J Bacteriol; 2013 Nov; 195(22):5112-22. PubMed ID: 24013630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gluconeogenesis, an essential metabolic pathway for pathogenic Francisella.
    Brissac T; Ziveri J; Ramond E; Tros F; Kock S; Dupuis M; Brillet M; Barel M; Peyriga L; Cahoreau E; Charbit A
    Mol Microbiol; 2015 Oct; 98(3):518-34. PubMed ID: 26192619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Hsp70 chaperone Ssa1 is essential for catabolite induced degradation of the gluconeogenic enzyme fructose-1,6-bisphosphatase.
    Juretschke J; Menssen R; Sickmann A; Wolf DH
    Biochem Biophys Res Commun; 2010 Jul; 397(3):447-52. PubMed ID: 20513352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brucella abortus depends on pyruvate phosphate dikinase and malic enzyme but not on Fbp and GlpX fructose-1,6-bisphosphatases for full virulence in laboratory models.
    Zúñiga-Ripa A; Barbier T; Conde-Álvarez R; Martínez-Gómez E; Palacios-Chaves L; Gil-Ramírez Y; Grilló MJ; Letesson JJ; Iriarte M; Moriyón I
    J Bacteriol; 2014 Aug; 196(16):3045-57. PubMed ID: 24936050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Over-expression of Tgs1 in Mycobacterium marinum enhances virulence in adult zebrafish.
    Liu DQ; Zhang JL; Pan ZF; Mai JT; Mei HJ; Dai Y; Zhang L; Wang QZ
    Int J Med Microbiol; 2020 Jan; 310(1):151378. PubMed ID: 31757695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Mycobacterium marinum TesA mutant defective for major cell wall-associated lipids is highly attenuated in Dictyostelium discoideum and zebrafish embryos.
    Alibaud L; Rombouts Y; Trivelli X; Burguière A; Cirillo SL; Cirillo JD; Dubremetz JF; Guérardel Y; Lutfalla G; Kremer L
    Mol Microbiol; 2011 May; 80(4):919-34. PubMed ID: 21375593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The independent prokaryotic origins of eukaryotic fructose-1, 6-bisphosphatase and sedoheptulose-1, 7-bisphosphatase and the implications of their origins for the evolution of eukaryotic Calvin cycle.
    Jiang YH; Wang DY; Wen JF
    BMC Evol Biol; 2012 Oct; 12():208. PubMed ID: 23083334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temporal modulation of host aerobic glycolysis determines the outcome of Mycobacterium marinum infection.
    Kan Y; Meng L; Xie L; Liu L; Dong W; Feng J; Yan Y; Zhao C; Peng G; Wang D; Lu M; Yang C; Niu C
    Fish Shellfish Immunol; 2020 Jan; 96():78-85. PubMed ID: 31775059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.