These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
240 related articles for article (PubMed ID: 27233103)
1. Stress softening and permanent deformation in human aortas: Continuum and computational modeling with application to arterial clamping. Fereidoonnezhad B; Naghdabadi R; Holzapfel GA J Mech Behav Biomed Mater; 2016 Aug; 61():600-616. PubMed ID: 27233103 [TBL] [Abstract][Full Text] [Related]
2. An anisotropic inelastic constitutive model to describe stress softening and permanent deformation in arterial tissue. Maher E; Creane A; Lally C; Kelly DJ J Mech Behav Biomed Mater; 2012 Aug; 12():9-19. PubMed ID: 22659364 [TBL] [Abstract][Full Text] [Related]
3. Layer-specific damage experiments and modeling of human thoracic and abdominal aortas with non-atherosclerotic intimal thickening. Weisbecker H; Pierce DM; Regitnig P; Holzapfel GA J Mech Behav Biomed Mater; 2012 Aug; 12():93-106. PubMed ID: 22659370 [TBL] [Abstract][Full Text] [Related]
4. Selective enzymatic removal of elastin and collagen from human abdominal aortas: uniaxial mechanical response and constitutive modeling. Schriefl AJ; Schmidt T; Balzani D; Sommer G; Holzapfel GA Acta Biomater; 2015 Apr; 17():125-36. PubMed ID: 25623592 [TBL] [Abstract][Full Text] [Related]
5. Site specific inelasticity of arterial tissue. Maher E; Early M; Creane A; Lally C; Kelly DJ J Biomech; 2012 May; 45(8):1393-9. PubMed ID: 22445610 [TBL] [Abstract][Full Text] [Related]
6. A method for incorporating three-dimensional residual stretches/stresses into patient-specific finite element simulations of arteries. Pierce DM; Fastl TE; Rodriguez-Vila B; Verbrugghe P; Fourneau I; Maleux G; Herijgers P; Gomez EJ; Holzapfel GA J Mech Behav Biomed Mater; 2015 Jul; 47():147-164. PubMed ID: 25931035 [TBL] [Abstract][Full Text] [Related]
7. Arterial clamping: finite element simulation and in vivo validation. Famaey N; Sommer G; Vander Sloten J; Holzapfel GA J Mech Behav Biomed Mater; 2012 Aug; 12():107-18. PubMed ID: 22659371 [TBL] [Abstract][Full Text] [Related]
8. An investigation into the role of different constituents in damage accumulation in arterial tissue and constitutive model development. Ghasemi M; Nolan DR; Lally C Biomech Model Mechanobiol; 2018 Dec; 17(6):1757-1769. PubMed ID: 30058051 [TBL] [Abstract][Full Text] [Related]
9. Re-examination of the mechanical anisotropy of porcine thoracic aorta by uniaxial tensile tests. Chen Q; Wang Y; Li ZY Biomed Eng Online; 2016 Dec; 15(Suppl 2):167. PubMed ID: 28155705 [TBL] [Abstract][Full Text] [Related]
10. A finite viscoelastic-plastic model for describing the uniaxial ratchetting of soft biological tissues. Zhu Y; Kang G; Kan Q; Yu C J Biomech; 2014 Mar; 47(5):996-1003. PubMed ID: 24462380 [TBL] [Abstract][Full Text] [Related]
11. Anisotropic damage of soft tissues in supra-physiological deformations. Khajehsaeid H; Tehrani M; Alaghehband N J Biomech; 2021 Jul; 124():110548. PubMed ID: 34171681 [TBL] [Abstract][Full Text] [Related]
12. Mechanical characterization and constitutive modelling of the damage process in rectus sheath. Martins P; Peña E; Jorge RM; Santos A; Santos L; Mascarenhas T; Calvo B J Mech Behav Biomed Mater; 2012 Apr; 8():111-22. PubMed ID: 22402158 [TBL] [Abstract][Full Text] [Related]
13. Simulation of balloon angioplasty in residually stressed blood vessels-Application of a gradient-enhanced fibre damage model. Polindara C; Waffenschmidt T; Menzel A J Biomech; 2016 Aug; 49(12):2341-8. PubMed ID: 26924658 [TBL] [Abstract][Full Text] [Related]
14. Failure damage mechanical properties of thoracic and abdominal porcine aorta layers and related constitutive modeling: phenomenological and microstructural approach. Peña JA; Martínez MA; Peña E Biomech Model Mechanobiol; 2019 Dec; 18(6):1709-1730. PubMed ID: 31123879 [TBL] [Abstract][Full Text] [Related]
15. A three-constituent damage model for arterial clamping in computer-assisted surgery. Famaey N; Vander Sloten J; Kuhl E Biomech Model Mechanobiol; 2013 Jan; 12(1):123-36. PubMed ID: 22446834 [TBL] [Abstract][Full Text] [Related]
16. A Combination of Constitutive Damage Model and Artificial Neural Networks to Characterize the Mechanical Properties of the Healthy and Atherosclerotic Human Coronary Arteries. Karimi A; Rahmati SM; Sera T; Kudo S; Navidbakhsh M Artif Organs; 2017 Sep; 41(9):E103-E117. PubMed ID: 28150399 [TBL] [Abstract][Full Text] [Related]
17. A constitutive formulation of vascular tissue mechanics including viscoelasticity and softening behaviour. Peña E; Alastrué V; Laborda A; Martínez MA; Doblaré M J Biomech; 2010 Mar; 43(5):984-9. PubMed ID: 19959171 [TBL] [Abstract][Full Text] [Related]
18. The influence of fiber dispersion on the mechanical response of aortic tissues in health and disease: a computational study. Niestrawska JA; Ch Haspinger D; Holzapfel GA Comput Methods Biomech Biomed Engin; 2018 Feb; 21(2):99-112. PubMed ID: 29436874 [TBL] [Abstract][Full Text] [Related]
19. A novel arterial constitutive model in a commercial finite element package: Application to balloon angioplasty. Zhao X; Liu Y; Zhang W; Wang C; Kassab GS J Theor Biol; 2011 Oct; 286(1):92-9. PubMed ID: 21689665 [TBL] [Abstract][Full Text] [Related]
20. A new constitutive model for simulation of softening, plateau, and densification phenomena for trabecular bone under compression. Lee CS; Lee JM; Youn B; Kim HS; Shin JK; Goh TS; Lee JS J Mech Behav Biomed Mater; 2017 Jan; 65():213-223. PubMed ID: 27592290 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]