These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 27233445)
1. Effects of poly (ε-caprolactone) coating on the properties of three-dimensional printed porous structures. Zhou Z; Cunningham E; Lennon A; McCarthy HO; Buchanan F; Clarke SA; Dunne N J Mech Behav Biomed Mater; 2017 Jun; 70():68-83. PubMed ID: 27233445 [TBL] [Abstract][Full Text] [Related]
2. Development of three-dimensional printing polymer-ceramic scaffolds with enhanced compressive properties and tuneable resorption. Zhou Z; Cunningham E; Lennon A; McCarthy HO; Buchanan F; Dunne N Mater Sci Eng C Mater Biol Appl; 2018 Dec; 93():975-986. PubMed ID: 30274136 [TBL] [Abstract][Full Text] [Related]
3. Fabrication and mechanical characterization of 3D printed vertical uniform and gradient scaffolds for bone and osteochondral tissue engineering. Bittner SM; Smith BT; Diaz-Gomez L; Hudgins CD; Melchiorri AJ; Scott DW; Fisher JP; Mikos AG Acta Biomater; 2019 May; 90():37-48. PubMed ID: 30905862 [TBL] [Abstract][Full Text] [Related]
4. Clinoptilolite/PCL-PEG-PCL composite scaffolds for bone tissue engineering applications. Pazarçeviren E; Erdemli Ö; Keskin D; Tezcaner A J Biomater Appl; 2017 Mar; 31(8):1148-1168. PubMed ID: 27881642 [TBL] [Abstract][Full Text] [Related]
5. Biodegradable and bioactive porous scaffold structures prepared using fused deposition modeling. Korpela J; Kokkari A; Korhonen H; Malin M; Närhi T; Seppälä J J Biomed Mater Res B Appl Biomater; 2013 May; 101(4):610-9. PubMed ID: 23281260 [TBL] [Abstract][Full Text] [Related]
6. Open-source three-dimensional printing of biodegradable polymer scaffolds for tissue engineering. Trachtenberg JE; Mountziaris PM; Miller JS; Wettergreen M; Kasper FK; Mikos AG J Biomed Mater Res A; 2014 Dec; 102(12):4326-35. PubMed ID: 25493313 [TBL] [Abstract][Full Text] [Related]
7. Improvement of mechanical strength and osteogenic potential of calcium sulfate-based hydroxyapatite 3-dimensional printed scaffolds by ε-polycarbonate coating. Kim BS; Yang SS; Park H; Lee SH; Cho YS; Lee J J Biomater Sci Polym Ed; 2017 Sep; 28(13):1256-1270. PubMed ID: 28598722 [TBL] [Abstract][Full Text] [Related]
8. Printability of calcium phosphate: calcium sulfate powders for the application of tissue engineered bone scaffolds using the 3D printing technique. Zhou Z; Buchanan F; Mitchell C; Dunne N Mater Sci Eng C Mater Biol Appl; 2014 May; 38():1-10. PubMed ID: 24656346 [TBL] [Abstract][Full Text] [Related]
9. Fabrication of biomimetic bone grafts with multi-material 3D printing. Sears N; Dhavalikar P; Whitely M; Cosgriff-Hernandez E Biofabrication; 2017 May; 9(2):025020. PubMed ID: 28530207 [TBL] [Abstract][Full Text] [Related]
10. Three dimensional printed calcium phosphate and poly(caprolactone) composites with improved mechanical properties and preserved microstructure. Vella JB; Trombetta RP; Hoffman MD; Inzana J; Awad H; Benoit DSW J Biomed Mater Res A; 2018 Mar; 106(3):663-672. PubMed ID: 29044984 [TBL] [Abstract][Full Text] [Related]
11. Structure, Properties, and In Vitro Behavior of Heat-Treated Calcium Sulfate Scaffolds Fabricated by 3D Printing. Asadi-Eydivand M; Solati-Hashjin M; Shafiei SS; Mohammadi S; Hafezi M; Abu Osman NA PLoS One; 2016; 11(3):e0151216. PubMed ID: 26999789 [TBL] [Abstract][Full Text] [Related]
12. Structural monitoring and modeling of the mechanical deformation of three-dimensional printed poly(ε-caprolactone) scaffolds. Ribeiro JFM; Oliveira SM; Alves JL; Pedro AJ; Reis RL; Fernandes EM; Mano JF Biofabrication; 2017 May; 9(2):025015. PubMed ID: 28349900 [TBL] [Abstract][Full Text] [Related]
13. Modulating mechanical behaviour of 3D-printed cartilage-mimetic PCL scaffolds: influence of molecular weight and pore geometry. Olubamiji AD; Izadifar Z; Si JL; Cooper DM; Eames BF; Chen DX Biofabrication; 2016 Jun; 8(2):025020. PubMed ID: 27328736 [TBL] [Abstract][Full Text] [Related]
14. Fabrication and characterization of chitosan/OGP coated porous poly(ε-caprolactone) scaffold for bone tissue engineering. Cui Z; Lin L; Si J; Luo Y; Wang Q; Lin Y; Wang X; Chen W J Biomater Sci Polym Ed; 2017 Jun; 28(9):826-845. PubMed ID: 28278041 [TBL] [Abstract][Full Text] [Related]
15. Mechanical properties of porous β-tricalcium phosphate composites prepared by ice-templating and poly(ε-caprolactone) impregnation. Flauder S; Sajzew R; Müller FA ACS Appl Mater Interfaces; 2015 Jan; 7(1):845-51. PubMed ID: 25474730 [TBL] [Abstract][Full Text] [Related]
16. 3D-printed poly(Ɛ-caprolactone) scaffold with gradient mechanical properties according to force distribution in the mandible for mandibular bone tissue engineering. Zamani Y; Amoabediny G; Mohammadi J; Seddiqi H; Helder MN; Zandieh-Doulabi B; Klein-Nulend J; Koolstra JH J Mech Behav Biomed Mater; 2020 Apr; 104():103638. PubMed ID: 32174396 [TBL] [Abstract][Full Text] [Related]
17. Biomineral coating increases bone formation by ex vivo BMP-7 gene therapy in rapid prototyped poly(L-lactic acid) (PLLA) and poly(ε-caprolactone) (PCL) porous scaffolds. Saito E; Suarez-Gonzalez D; Murphy WL; Hollister SJ Adv Healthc Mater; 2015 Mar; 4(4):621-32. PubMed ID: 25515846 [TBL] [Abstract][Full Text] [Related]
18. 3D printed macroporous scaffolds of PCL and inulin-g-P(D,L)LA for bone tissue engineering applications. Tommasino C; Auriemma G; Sardo C; Alvarez-Lorenzo C; Garofalo E; Morello S; Falcone G; Aquino RP Int J Pharm; 2023 Jun; 641():123093. PubMed ID: 37268029 [TBL] [Abstract][Full Text] [Related]
19. PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: morphology, mechanical properties and bioactivity. Milovac D; Gallego Ferrer G; Ivankovic M; Ivankovic H Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():437-45. PubMed ID: 24268280 [TBL] [Abstract][Full Text] [Related]
20. Experimental study on the construction of small three-dimensional tissue engineered grafts of electrospun poly-ε-caprolactone. Zhu GC; Gu YQ; Geng X; Feng ZG; Zhang SW; Ye L; Wang ZG J Mater Sci Mater Med; 2015 Feb; 26(2):112. PubMed ID: 25665848 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]