These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

454 related articles for article (PubMed ID: 27233469)

  • 1. Calcium dynamics predict direction of synaptic plasticity in striatal spiny projection neurons.
    Jędrzejewska-Szmek J; Damodaran S; Dorman DB; Blackwell KT
    Eur J Neurosci; 2017 Apr; 45(8):1044-1056. PubMed ID: 27233469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of inhibition and triplets of excitatory spikes modulates the NMDA-R-mediated synaptic plasticity in a computational model of spike timing-dependent plasticity.
    Cutsuridis V
    Hippocampus; 2013 Jan; 23(1):75-86. PubMed ID: 22851353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Corticostriatal paired-pulse potentiation produced by voltage-dependent activation of NMDA receptors and L-type Ca(2+) channels.
    Akopian G; Walsh JP
    J Neurophysiol; 2002 Jan; 87(1):157-65. PubMed ID: 11784738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spiking neurons, dopamine, and plasticity: timing is everything, but concentration also matters.
    Thivierge JP; Rivest F; Monchi O
    Synapse; 2007 Jun; 61(6):375-90. PubMed ID: 17372980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of NMDA subunit composition on calcium influx and spike timing-dependent plasticity in striatal medium spiny neurons.
    Evans RC; Morera-Herreras T; Cui Y; Du K; Sheehan T; Kotaleski JH; Venance L; Blackwell KT
    PLoS Comput Biol; 2012; 8(4):e1002493. PubMed ID: 22536151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic modulation of spike timing-dependent calcium influx during corticostriatal upstates.
    Evans RC; Maniar YM; Blackwell KT
    J Neurophysiol; 2013 Oct; 110(7):1631-45. PubMed ID: 23843436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dopamine receptor activation is required for corticostriatal spike-timing-dependent plasticity.
    Pawlak V; Kerr JN
    J Neurosci; 2008 Mar; 28(10):2435-46. PubMed ID: 18322089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A calcium-influx-dependent plasticity model exhibiting multiple STDP curves.
    Houben AM; Keil MS
    J Comput Neurosci; 2020 Feb; 48(1):65-84. PubMed ID: 31980990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interplay of multiple pathways and activity-dependent rules in STDP.
    Vignoud G; Venance L; Touboul JD
    PLoS Comput Biol; 2018 Aug; 14(8):e1006184. PubMed ID: 30106953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endocannabinoids mediate bidirectional striatal spike-timing-dependent plasticity.
    Cui Y; Paillé V; Xu H; Genet S; Delord B; Fino E; Berry H; Venance L
    J Physiol; 2015 Jul; 593(13):2833-49. PubMed ID: 25873197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dopamine Receptors Differentially Control Binge Alcohol Drinking-Mediated Synaptic Plasticity of the Core Nucleus Accumbens Direct and Indirect Pathways.
    Ji X; Saha S; Kolpakova J; Guildford M; Tapper AR; Martin GE
    J Neurosci; 2017 May; 37(22):5463-5474. PubMed ID: 28473645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterosynaptic metaplastic regulation of synaptic efficacy in CA1 pyramidal neurons of rat hippocampus.
    Le Ray D; Fernández De Sevilla D; Belén Porto A; Fuenzalida M; Buño W
    Hippocampus; 2004; 14(8):1011-25. PubMed ID: 15390171
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium dynamics in dendritic spines: a link to structural plasticity.
    Dur-e-Ahmad M; Imran M; Gul A
    Math Biosci; 2011 Apr; 230(2):55-66. PubMed ID: 21295598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regional and postnatal heterogeneity of activity-dependent long-term changes in synaptic efficacy in the dorsal striatum.
    Partridge JG; Tang KC; Lovinger DM
    J Neurophysiol; 2000 Sep; 84(3):1422-9. PubMed ID: 10980015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transient synaptic potentiation in the visual cortex. I. Cellular mechanisms.
    Harsanyi K; Friedlander MJ
    J Neurophysiol; 1997 Mar; 77(3):1269-83. PubMed ID: 9084595
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium time course as a signal for spike-timing-dependent plasticity.
    Rubin JE; Gerkin RC; Bi GQ; Chow CC
    J Neurophysiol; 2005 May; 93(5):2600-13. PubMed ID: 15625097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Action potential timing determines dendritic calcium during striatal up-states.
    Kerr JN; Plenz D
    J Neurosci; 2004 Jan; 24(4):877-85. PubMed ID: 14749432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular mechanisms underlying striatal synaptic plasticity: relevance to chronic alcohol consumption and seeking.
    Blackwell KT; Salinas AG; Tewatia P; English B; Hellgren Kotaleski J; Lovinger DM
    Eur J Neurosci; 2019 Mar; 49(6):768-783. PubMed ID: 29602186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A silent eligibility trace enables dopamine-dependent synaptic plasticity for reinforcement learning in the mouse striatum.
    Shindou T; Shindou M; Watanabe S; Wickens J
    Eur J Neurosci; 2019 Mar; 49(5):726-736. PubMed ID: 29603470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcium-dependent calcium decay explains STDP in a dynamic model of hippocampal synapses.
    Standage D; Trappenberg T; Blohm G
    PLoS One; 2014; 9(1):e86248. PubMed ID: 24465987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.