These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 27233513)

  • 1. Conversion of glycerol to 1,3-dihydroxyacetone by glycerol dehydrogenase co-expressed with an NADH oxidase for cofactor regeneration.
    Zhang J; Cui Z; Chang H; Fan X; Zhao Q; Wei W
    Biotechnol Lett; 2016 Sep; 38(9):1559-64. PubMed ID: 27233513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combined cross-linked enzyme aggregates of glycerol dehydrogenase and NADH oxidase for high efficiency in situ NAD
    Xu MQ; Li FL; Yu WQ; Li RF; Zhang YW
    Int J Biol Macromol; 2020 Feb; 144():1013-1021. PubMed ID: 31669469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanotube-supported bioproduction of 4-hydroxy-2-butanone via in situ cofactor regeneration.
    Wang L; Zhang H; Ching CB; Chen Y; Jiang R
    Appl Microbiol Biotechnol; 2012 Jun; 94(5):1233-41. PubMed ID: 22116631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous production of 1,3-dihydroxyacetone and xylitol from glycerol and xylose using a nanoparticle-supported multi-enzyme system with in situ cofactor regeneration.
    Zhang Y; Gao F; Zhang SP; Su ZG; Ma GH; Wang P
    Bioresour Technol; 2011 Jan; 102(2):1837-43. PubMed ID: 20947342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Codon-Optimized NADH Oxidase Gene Expression and Gene Fusion with Glycerol Dehydrogenase for Bienzyme System with Cofactor Regeneration.
    Fang B; Jiang W; Zhou Q; Wang S
    PLoS One; 2015; 10(6):e0128412. PubMed ID: 26115038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of Thermotoga maritima glycerol dehydrogenase for the enzymatic production of dihydroxyacetone.
    Beauchamp J; Gross PG; Vieille C
    Appl Microbiol Biotechnol; 2014 Aug; 98(16):7039-50. PubMed ID: 24664447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of immobilized cell preparation obtained from biomass of Gluconacetobacter xylinus bacteria in biotransformation of glycerol to dihydroxyacetone.
    Stasiak-Różańska L; Błażejak S; Miklaszewska A
    Acta Sci Pol Technol Aliment; 2011; 10(1):35-49. PubMed ID: 22232527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coupling xylitol dehydrogenase with NADH oxidase improves l-xylulose production in Escherichia coli culture.
    Han Q; Eiteman MA
    Enzyme Microb Technol; 2017 Nov; 106():106-113. PubMed ID: 28859803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cloning and characterization of two distinct water-forming NADH oxidases from Lactobacillus pentosus for the regeneration of NAD.
    Zhang JD; Cui ZM; Fan XJ; Wu HL; Chang HH
    Bioprocess Biosyst Eng; 2016 Apr; 39(4):603-11. PubMed ID: 26801669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering NAD+ availability for Escherichia coli whole-cell biocatalysis: a case study for dihydroxyacetone production.
    Zhou YJ; Yang W; Wang L; Zhu Z; Zhang S; Zhao ZK
    Microb Cell Fact; 2013 Nov; 12():103. PubMed ID: 24209782
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced production of dihydroxyacetone from glycerol by overexpression of glycerol dehydrogenase in an alcohol dehydrogenase-deficient mutant of Gluconobacter oxydans.
    Li MH; Wu J; Liu X; Lin JP; Wei DZ; Chen H
    Bioresour Technol; 2010 Nov; 101(21):8294-9. PubMed ID: 20576428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing cofactor recycling in the bioconversion of racemic alcohols to chiral amines with alcohol dehydrogenase and amine dehydrogenase by coupling cells and cell-free system.
    Liu J; Li Z
    Biotechnol Bioeng; 2019 Mar; 116(3):536-542. PubMed ID: 30536736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glycerol dehydrogenase. structure, specificity, and mechanism of a family III polyol dehydrogenase.
    Ruzheinikov SN; Burke J; Sedelnikova S; Baker PJ; Taylor R; Bullough PA; Muir NM; Gore MG; Rice DW
    Structure; 2001 Sep; 9(9):789-802. PubMed ID: 11566129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced aldehyde dehydrogenase activity by regenerating NAD+ in Klebsiella pneumoniae and implications for the glycerol dissimilation pathways.
    Li Y; Su M; Ge X; Tian P
    Biotechnol Lett; 2013 Oct; 35(10):1609-15. PubMed ID: 23794046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatially programmed assembling of oxidoreductases with single-stranded DNA for cofactor-required reactions.
    Wang TD; Ma F; Ma X; Wang P
    Appl Microbiol Biotechnol; 2015 Apr; 99(8):3469-77. PubMed ID: 25363557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aerobic glycerol dissimilation via the Enterococcus faecalis DhaK pathway depends on NADH oxidase and a phosphotransfer reaction from PEP to DhaK via EIIADha.
    Sauvageot N; Ladjouzi R; Benachour A; Rincé A; Deutscher J; Hartke A
    Microbiology (Reading); 2012 Oct; 158(Pt 10):2661-2666. PubMed ID: 22878395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective oxidation of glycerol to 1,3-dihydroxyacetone by covalently immobilized glycerol dehydrogenases with higher stability and lower product inhibition.
    Rocha-Martin J; Acosta A; Berenguer J; Guisan JM; Lopez-Gallego F
    Bioresour Technol; 2014 Oct; 170():445-453. PubMed ID: 25164336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of a whole-cell catalyst co-expressing glycerol dehydrogenase and glucose dehydrogenase and its application in the synthesis of L-glyceraldehyde.
    Richter N; Neumann M; Liese A; Wohlgemuth R; Weckbecker A; Eggert T; Hummel W
    Biotechnol Bioeng; 2010 Jul; 106(4):541-52. PubMed ID: 20198657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cofactor Regeneration Using Permeabilized
    Rho HS; Choi K
    J Microbiol Biotechnol; 2018 Aug; 28(8):1346-1351. PubMed ID: 29943553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient whole-cell biocatalyst for acetoin production with NAD+ regeneration system through homologous co-expression of 2,3-butanediol dehydrogenase and NADH oxidase in engineered Bacillus subtilis.
    Bao T; Zhang X; Rao Z; Zhao X; Zhang R; Yang T; Xu Z; Yang S
    PLoS One; 2014; 9(7):e102951. PubMed ID: 25036158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.