BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 27233677)

  • 41. Psychometric Findings for the SCAR-Q Patient-Reported Outcome Measure Based on 731 Children and Adults with Surgical, Traumatic, and Burn Scars from Four Countries.
    Ziolkowski NI; Pusic AL; Fish JS; Mundy LR; Wong She R; Forrest CR; Hollenbeck S; Arriagada C; Calcagno M; Greenhalgh D; Klassen AF
    Plast Reconstr Surg; 2020 Sep; 146(3):331e-338e. PubMed ID: 32842115
    [TBL] [Abstract][Full Text] [Related]  

  • 42. How to evaluate scar colour after burn injuries - A clinical comparison of the Mexameter® and the subjective scar assessment (POSAS/VSS).
    Bagheri M; von Kohout M; Fuchs PC; Seyhan H; Stromps JP; Lefering R; Opländer C; Schiefer JL
    Burns; 2024 Apr; 50(3):691-701. PubMed ID: 38097444
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A closed unventilated chamber for the measurement of transepidermal water loss.
    Nuutinen J; Alanen E; Autio P; Lahtinen MR; Harvima I; Lahtinen T
    Skin Res Technol; 2003 May; 9(2):85-9. PubMed ID: 12709124
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The Association Between Postburn Vitamin D Deficiency and the Biomechanical Properties of Hypertrophic Scars.
    Cho YS; Seo CH; Joo SY; Song J; Cha E; Ohn SH
    J Burn Care Res; 2019 Apr; 40(3):274-280. PubMed ID: 30806461
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Correlation of transepidermal water loss with skin barrier properties in vitro: comparison of three evaporimeters.
    Elkeeb R; Hui X; Chan H; Tian L; Maibach HI
    Skin Res Technol; 2010 Feb; 16(1):9-15. PubMed ID: 20384878
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Quantitative measurement of hypertrophic scar: interrater reliability and concurrent validity.
    Nedelec B; Correa JA; Rachelska G; Armour A; LaSalle L
    J Burn Care Res; 2008; 29(3):501-11. PubMed ID: 18388576
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The Intra-rater reliability and validity of ultrasonography in the evaluation of hypertrophic scars caused by burns.
    Lee SY; Cho YS; Kim L; Joo SY; Seo CH
    Burns; 2023 Mar; 49(2):344-352. PubMed ID: 35459576
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A clinimetric assessment of the validity and reliability of 3D technology for scar surface area measurement.
    Doomen MCHA; Rijpma D; Pijpe A; Meij-de Vries A; Niessen FB; Karaoglu S; de Vet HCW; Gevers T; van Zuijlen PPM
    Burns; 2023 May; 49(3):583-594. PubMed ID: 36764836
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Non-ablative fractional laser provides long-term improvement of mature burn scars--a randomized controlled trial with histological assessment.
    Taudorf EH; Danielsen PL; Paulsen IF; Togsverd-Bo K; Dierickx C; Paasch U; Haedersdal M
    Lasers Surg Med; 2015 Feb; 47(2):141-7. PubMed ID: 25154734
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Transepidermal water loss reflects permeability barrier status: validation in human and rodent in vivo and ex vivo models.
    Fluhr JW; Feingold KR; Elias PM
    Exp Dermatol; 2006 Jul; 15(7):483-92. PubMed ID: 16761956
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Transepidermal water loss in newborns within the first 24 hours of life: baseline values and comparison with adults.
    Raone B; Raboni R; Rizzo N; Simonazzi G; Patrizi A
    Pediatr Dermatol; 2014; 31(2):191-5. PubMed ID: 24383609
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Transepidermal water loss in young and aged healthy humans: a systematic review and meta-analysis.
    Kottner J; Lichterfeld A; Blume-Peytavi U
    Arch Dermatol Res; 2013 May; 305(4):315-23. PubMed ID: 23341028
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Validation of an objective scar pigmentation measurement by using a spectrocolorimeter.
    Li-Tsang CW; Lau JC; Liu SK
    Burns; 2003 Dec; 29(8):779-84. PubMed ID: 14636751
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Quantitative measurement of hypertrophic scar: intrarater reliability, sensitivity, and specificity.
    Nedelec B; Correa JA; Rachelska G; Armour A; LaSalle L
    J Burn Care Res; 2008; 29(3):489-500. PubMed ID: 18388577
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Objective evaluation of burn and post-surgical scars and the accuracy of subjective scar type judgment.
    Wang ZY; Zhang J; Lu SL
    Chin Med J (Engl); 2008 Dec; 121(24):2517-20. PubMed ID: 19187588
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Intra-and inter-individual variations in transepidermal water loss on the face: facial locations for bioengineering studies.
    Schnetz E; Kuss O; Schmitt J; Diepgen TL; Kuhn M; Fartasch M
    Contact Dermatitis; 1999 May; 40(5):243-7. PubMed ID: 10344478
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Medical Needling: Effect on Moisture and Transepidermal Water Loss of Mature Hypertrophic Burn Scars.
    Busch KH; Aliu A; Walezko N; Aust M
    Cureus; 2018 Mar; 10(3):e2365. PubMed ID: 29805934
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A validation study of scar vascularity and pigmentation assessment using dermoscopy.
    Wei Y; Li-Tsang CWP; Luk DCK; Tan T; Zhang W; Chiu TW
    Burns; 2015 Dec; 41(8):1717-1723. PubMed ID: 26071080
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Outcome after burns: an observational study on burn scar maturation and predictors for severe scarring.
    van der Wal MB; Vloemans JF; Tuinebreijer WE; van de Ven P; van Unen E; van Zuijlen PP; Middelkoop E
    Wound Repair Regen; 2012; 20(5):676-87. PubMed ID: 22985039
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Direct comparison of reproducibility and reliability in quantitative assessments of burn scar properties.
    Baumann ME; DeBruler DM; Blackstone BN; Coffey RA; Boyce ST; Supp DM; Bailey JK; Powell HM
    Burns; 2021 Mar; 47(2):466-478. PubMed ID: 32839037
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.