BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 27233743)

  • 1. Quantitative proteomics and phosphoproteomics of sugar beet monosomic addition line M14 in response to salt stress.
    Yu B; Li J; Koh J; Dufresne C; Yang N; Qi S; Zhang Y; Ma C; Duong BV; Chen S; Li H
    J Proteomics; 2016 Jun; 143():286-297. PubMed ID: 27233743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Salt stress response of membrane proteome of sugar beet monosomic addition line M14.
    Li H; Pan Y; Zhang Y; Wu C; Ma C; Yu B; Zhu N; Koh J; Chen S
    J Proteomics; 2015 Sep; 127(Pt A):18-33. PubMed ID: 25845583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteomic analysis of salt tolerance in sugar beet monosomic addition line M14.
    Yang L; Zhang Y; Zhu N; Koh J; Ma C; Pan Y; Yu B; Chen S; Li H
    J Proteome Res; 2013 Nov; 12(11):4931-50. PubMed ID: 23799291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. De novo transcriptome assembly and identification of salt-responsive genes in sugar beet M14.
    Lv X; Jin Y; Wang Y
    Comput Biol Chem; 2018 Aug; 75():1-10. PubMed ID: 29705503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overexpression of S-Adenosyl-l-Methionine Synthetase 2 from Sugar Beet M14 Increased Arabidopsis Tolerance to Salt and Oxidative Stress.
    Ma C; Wang Y; Gu D; Nan J; Chen S; Li H
    Int J Mol Sci; 2017 Apr; 18(4):. PubMed ID: 28420190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Salt stress induced proteome and transcriptome changes in sugar beet monosomic addition line M14.
    Yang L; Ma C; Wang L; Chen S; Li H
    J Plant Physiol; 2012 Jun; 169(9):839-50. PubMed ID: 22498239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. iTRAQ-Based Comparative Proteomic Analysis Provides Insights into Molecular Mechanisms of Salt Tolerance in Sugar Beet (
    Wu GQ; Wang JL; Feng RJ; Li SJ; Wang CM
    Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30518064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative Physiological and Proteomic Analysis of Two Sugar Beet Genotypes with Contrasting Salt Tolerance.
    Wang Y; Stevanato P; Lv C; Li R; Geng G
    J Agric Food Chem; 2019 May; 67(21):6056-6073. PubMed ID: 31070911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cys-SH based quantitative redox proteomics of salt induced response in sugar beet monosomic addition line M14.
    Li J; Wang K; Ji M; Zhang T; Yang C; Liu H; Chen S; Li H; Li H
    Bot Stud; 2021 Oct; 62(1):16. PubMed ID: 34661775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative Ubiquitination Proteomics Revealed the Salt Tolerance Mechanism in Sugar Beet Monomeric Additional Line M14.
    Liu H; Zhang J; Li J; Yu B; Chen S; Ma C; Li H
    Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The physiological and metabolic changes in sugar beet seedlings under different levels of salt stress.
    Wang Y; Stevanato P; Yu L; Zhao H; Sun X; Sun F; Li J; Geng G
    J Plant Res; 2017 Nov; 130(6):1079-1093. PubMed ID: 28711996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overexpression of a
    Ji M; Wang K; Wang L; Chen S; Li H; Ma C; Wang Y
    Int J Mol Sci; 2019 Apr; 20(8):. PubMed ID: 31018555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. OMICS Technologies and Applications in Sugar Beet.
    Zhang Y; Nan J; Yu B
    Front Plant Sci; 2016; 7():900. PubMed ID: 27446130
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteome analysis of sugar beet (Beta vulgaris L.) elucidates constitutive adaptation during the first phase of salt stress.
    Wakeel A; Asif AR; Pitann B; Schubert S
    J Plant Physiol; 2011 Apr; 168(6):519-26. PubMed ID: 20980072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteomic and phosphoproteomic analysis reveals the response and defense mechanism in leaves of diploid wheat T. monococcum under salt stress and recovery.
    Lv DW; Zhu GR; Zhu D; Bian YW; Liang XN; Cheng ZW; Deng X; Yan YM
    J Proteomics; 2016 Jun; 143():93-105. PubMed ID: 27095598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox and Reactive Oxygen Species Network in Acclimation for Salinity Tolerance in Sugar Beet.
    Hossain MS; ElSayed AI; Moore M; Dietz KJ
    J Exp Bot; 2017 Feb; 68(5):1283-1298. PubMed ID: 28338762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cloning of a cystatin gene from sugar beet M14 that can enhance plant salt tolerance.
    Wang Y; Zhan Y; Wu C; Gong S; Zhu N; Chen S; Li H
    Plant Sci; 2012 Aug; 191-192():93-9. PubMed ID: 22682568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteomic analysis of sugar beet apomictic monosomic addition line M14.
    Li H; Cao H; Wang Y; Pang Q; Ma C; Chen S
    J Proteomics; 2009 Dec; 73(2):297-308. PubMed ID: 19782777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative redox proteomics revealed molecular mechanisms of salt tolerance in the roots of sugar beet monomeric addition line M14.
    Liu H; Du X; Zhang J; Li J; Chen S; Duanmu H; Li H
    Bot Stud; 2022 Mar; 63(1):5. PubMed ID: 35247135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptome Analysis of Salt-Sensitive and Tolerant Genotypes Reveals Salt-Tolerance Metabolic Pathways in Sugar Beet.
    Geng G; Lv C; Stevanato P; Li R; Liu H; Yu L; Wang Y
    Int J Mol Sci; 2019 Nov; 20(23):. PubMed ID: 31775274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.