These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 27233764)

  • 21. Effect of plasma expander viscosity on the cell free layer.
    Hightower CM; Yalcin O; Vázquez BY; Johnson PC; Intaglietta M
    Biorheology; 2011; 48(2):115-25. PubMed ID: 21811016
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Increases in microvascular perfusion and tissue oxygenation via pulsed electromagnetic fields in the healthy rat brain.
    Bragin DE; Statom GL; Hagberg S; Nemoto EM
    J Neurosurg; 2015 May; 122(5):1239-47. PubMed ID: 25343187
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Red blood cell aggregation and microcirculation in rat cremaster muscle.
    Vicaut E; Hou X; Decuypère L; Taccoen A; Duvelleroy M
    Int J Microcirc Clin Exp; 1994; 14(1-2):14-21. PubMed ID: 7525499
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Near-Wall Migration Dynamics of Erythrocytes
    Namgung B; Ng YC; Leo HL; Rifkind JM; Kim S
    Front Physiol; 2017; 8():963. PubMed ID: 29238303
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nitric oxide modulates oxygen consumption by arteriolar walls in rat skeletal muscle.
    Shibata M; Ichioka S; Kamiya A
    Am J Physiol Heart Circ Physiol; 2005 Dec; 289(6):H2673-9. PubMed ID: 16040716
    [TBL] [Abstract][Full Text] [Related]  

  • 26. pO2 measurements in arteriolar networks.
    Torres Filho IP; Kerger H; Intaglietta M
    Microvasc Res; 1996 Mar; 51(2):202-12. PubMed ID: 8778575
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Two-phase model for prediction of cell-free layer width in blood flow.
    Namgung B; Ju M; Cabrales P; Kim S
    Microvasc Res; 2013 Jan; 85():68-76. PubMed ID: 23116701
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Opposite effects of red blood cell aggregation on resistance to blood flow.
    Vicaut E
    J Cardiovasc Surg (Torino); 1995 Aug; 36(4):361-8. PubMed ID: 7593148
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A test of the role of flow-dependent dilation in arteriolar responses to occlusion.
    McGahren ED; Dora KA; Damon DN; Duling BR
    Am J Physiol; 1997 Feb; 272(2 Pt 2):H714-21. PubMed ID: 9124429
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modulation of vascular tone in renal microcirculation by erythrocytes: role of EDRF.
    Imig JD; Gebremedhin D; Harder DR; Roman RJ
    Am J Physiol; 1993 Jan; 264(1 Pt 2):H190-5. PubMed ID: 8430846
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of cell-free layer variation on arteriolar wall shear stress.
    Namgung B; Ong PK; Johnson PC; Kim S
    Ann Biomed Eng; 2011 Jan; 39(1):359-66. PubMed ID: 20652744
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microvascular blood flow resistance: Role of red blood cell migration and dispersion.
    Katanov D; Gompper G; Fedosov DA
    Microvasc Res; 2015 May; 99():57-66. PubMed ID: 25724979
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dependence of intestinal arteriolar regulation on flow-mediated nitric oxide formation.
    Bohlen HG; Nase GP
    Am J Physiol Heart Circ Physiol; 2000 Nov; 279(5):H2249-58. PubMed ID: 11045960
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computational analysis of nitric oxide biotransport in a microvessel influenced by red blood cells.
    Wei Y; Mu L; Tang Y; Shen Z; He Y
    Microvasc Res; 2019 Sep; 125():103878. PubMed ID: 31051161
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Emergent cell-free layer asymmetry and biased haematocrit partition in a biomimetic vascular network of successive bifurcations.
    Zhou Q; Fidalgo J; Bernabeu MO; Oliveira MSN; Krüger T
    Soft Matter; 2021 Apr; 17(13):3619-3633. PubMed ID: 33459318
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A simple "streak length method" for quantifying and characterizing red blood cell velocity profiles and blood flow in rat skeletal muscle arterioles.
    Al-Khazraji BK; Novielli NM; Goldman D; Medeiros PJ; Jackson DN
    Microcirculation; 2012 May; 19(4):327-35. PubMed ID: 22284025
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multiple red blood cell flows through microvascular bifurcations: cell free layer, cell trajectory, and hematocrit separation.
    Yin X; Thomas T; Zhang J
    Microvasc Res; 2013 Sep; 89():47-56. PubMed ID: 23727384
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Temporal and spatial variations of cell-free layer width in arterioles.
    Kim S; Kong RL; Popel AS; Intaglietta M; Johnson PC
    Am J Physiol Heart Circ Physiol; 2007 Sep; 293(3):H1526-35. PubMed ID: 17526647
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inaccuracies in blood flow estimates in microvessels during arteriolar vasoconstriction.
    Proctor KG; Damon DN; Duling BR
    Microvasc Res; 1984 Jul; 28(1):23-36. PubMed ID: 6748957
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Skeletal muscle microcirculatory response to rat alpha-calcitonin gene-related peptide.
    Arden WA; Fiscus RR; Beihn LD; Derbin M; Oremus R; Gross DR
    Neuropeptides; 1994 Jul; 27(1):39-51. PubMed ID: 7526261
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.