BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 27233922)

  • 1. Development of linear and threshold no significant risk levels for inhalation exposure to titanium dioxide using systematic review and mode of action considerations.
    Thompson CM; Suh M; Mittal L; Wikoff DS; Welsh B; Proctor DM
    Regul Toxicol Pharmacol; 2016 Oct; 80():60-70. PubMed ID: 27233922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Significance of particle parameters in the evaluation of exposure-dose-response relationships of inhaled particles.
    Oberdorster G
    Inhal Toxicol; 1996; 8 Suppl():73-89. PubMed ID: 11542496
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Risk assessment strategies for nanoscale and fine-sized titanium dioxide particles: Recognizing hazard and exposure issues.
    Warheit DB; Donner EM
    Food Chem Toxicol; 2015 Nov; 85():138-47. PubMed ID: 26362081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An approach to risk assessment for TiO2.
    Dankovic D; Kuempel E; Wheeler M
    Inhal Toxicol; 2007; 19 Suppl 1():205-12. PubMed ID: 17886069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The relevance of the rat lung response to particle overload for human risk assessment: a workshop consensus report.
    ILSI Risk Science Institute
    Inhal Toxicol; 2000; 12(1-2):1-17. PubMed ID: 10715616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. What is the impact of surface modifications and particle size on commercial titanium dioxide particle samples? - A review of in vivo pulmonary and oral toxicity studies - Revised 11-6-2018.
    Warheit DB; Brown SC
    Toxicol Lett; 2019 Mar; 302():42-59. PubMed ID: 30468858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dosimetric adjustments for interspecies extrapolation of inhaled poorly soluble particles (PSP).
    Jarabek AM; Asgharian B; Miller FJ
    Inhal Toxicol; 2005; 17(7-8):317-34. PubMed ID: 16020031
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relevance of the rat lung tumor response to particle overload for human risk assessment-Update and interpretation of new data since ILSI 2000.
    Warheit DB; Kreiling R; Levy LS
    Toxicology; 2016 Dec; 374():42-59. PubMed ID: 27876671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of the mode of action for hexavalent chromium-induced lung cancer following inhalation exposures.
    Proctor DM; Suh M; Campleman SL; Thompson CM
    Toxicology; 2014 Nov; 325():160-79. PubMed ID: 25174529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhalation cancer risk assessment of cobalt metal.
    Suh M; Thompson CM; Brorby GP; Mittal L; Proctor DM
    Regul Toxicol Pharmacol; 2016 Aug; 79():74-82. PubMed ID: 27177823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhalation of high concentrations of low toxicity dusts in rats results in impaired pulmonary clearance mechanisms and persistent inflammation.
    Warheit DB; Hansen JF; Yuen IS; Kelly DP; Snajdr SI; Hartsky MA
    Toxicol Appl Pharmacol; 1997 Jul; 145(1):10-22. PubMed ID: 9221819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The hazards and risks of inhaled poorly soluble particles - where do we stand after 30 years of research?
    Borm PJA; Driscoll KE
    Part Fibre Toxicol; 2019 Feb; 16(1):11. PubMed ID: 30791931
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carcinogenic hazards from inhaled carbon black, titanium dioxide, and talc not containing asbestos or asbestiform fibers: recent evaluations by an IARC Monographs Working Group.
    Baan RA
    Inhal Toxicol; 2007; 19 Suppl 1():213-28. PubMed ID: 17886070
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Model-based assessment for human inhalation exposure risk to airborne nano/fine titanium dioxide particles.
    Liao CM; Chiang YH; Chio CP
    Sci Total Environ; 2008 Dec; 407(1):165-77. PubMed ID: 18952258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How to measure hazards/risks following exposures to nanoscale or pigment-grade titanium dioxide particles.
    Warheit DB
    Toxicol Lett; 2013 Jul; 220(2):193-204. PubMed ID: 23603385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles.
    Bermudez E; Mangum JB; Wong BA; Asgharian B; Hext PM; Warheit DB; Everitt JI
    Toxicol Sci; 2004 Feb; 77(2):347-57. PubMed ID: 14600271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of TiO2 P25 Nanoparticles Genotoxicity on Lung, Blood, and Liver Cells in Lung Overload and Non-Overload Conditions After Repeated Respiratory Exposure in Rats.
    Relier C; Dubreuil M; Lozano Garcìa O; Cordelli E; Mejia J; Eleuteri P; Robidel F; Loret T; Pacchierotti F; Lucas S; Lacroix G; Trouiller B
    Toxicol Sci; 2017 Apr; 156(2):527-537. PubMed ID: 28087835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Translational toxicology in setting occupational exposure limits for dusts and hazard classification - a critical evaluation of a recent approach to translate dust overload findings from rats to humans.
    Morfeld P; Bruch J; Levy L; Ngiewih Y; Chaudhuri I; Muranko HJ; Myerson R; McCunney RJ
    Part Fibre Toxicol; 2015 Apr; 12():3. PubMed ID: 25925672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toxicokinetics and effects of fibrous and nonfibrous particles.
    Oberdörster G
    Inhal Toxicol; 2002 Jan; 14(1):29-56. PubMed ID: 12122559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chronic nasal exposure to nanoparticulate TiO
    Hong F; Ji L; Zhou Y; Wang L
    Environ Toxicol; 2017 May; 32(5):1651-1657. PubMed ID: 28101940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.