BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 27234263)

  • 1. A roadmap for gene system development in Clostridium.
    Minton NP; Ehsaan M; Humphreys CM; Little GT; Baker J; Henstra AM; Liew F; Kelly ML; Sheng L; Schwarz K; Zhang Y
    Anaerobe; 2016 Oct; 41():104-112. PubMed ID: 27234263
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering of vitamin prototrophy in Clostridium ljungdahlii and Clostridium autoethanogenum.
    Annan FJ; Al-Sinawi B; Humphreys CM; Norman R; Winzer K; Köpke M; Simpson SD; Minton NP; Henstra AM
    Appl Microbiol Biotechnol; 2019 Jun; 103(11):4633-4648. PubMed ID: 30972463
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel conjugal donor strain for improved DNA transfer into Clostridium spp.
    Woods C; Humphreys CM; Rodrigues RM; Ingle P; Rowe P; Henstra AM; Köpke M; Simpson SD; Winzer K; Minton NP
    Anaerobe; 2019 Oct; 59():184-191. PubMed ID: 31269456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Digital PCR: a tool in clostridial mutant selection and detection.
    Dierick E; Callens C; De Spiegelaere W; Ducatelle R; Van Immerseel F; Goossens E
    Appl Microbiol Biotechnol; 2023 Nov; 107(22):6973-6983. PubMed ID: 37704769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR/Cas9-Based Efficient Genome Editing in Clostridium ljungdahlii, an Autotrophic Gas-Fermenting Bacterium.
    Huang H; Chai C; Li N; Rowe P; Minton NP; Yang S; Jiang W; Gu Y
    ACS Synth Biol; 2016 Dec; 5(12):1355-1361. PubMed ID: 27276212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antibiotic-Induced Alterations of the Gut Microbiota Alter Secondary Bile Acid Production and Allow for Clostridium difficile Spore Germination and Outgrowth in the Large Intestine.
    Theriot CM; Bowman AA; Young VB
    mSphere; 2016; 1(1):. PubMed ID: 27239562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CodY-Dependent Regulation of Sporulation in Clostridium difficile.
    Nawrocki KL; Edwards AN; Daou N; Bouillaut L; McBride SM
    J Bacteriol; 2016 Aug; 198(15):2113-30. PubMed ID: 27246573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clostridium difficile infection: Early history, diagnosis and molecular strain typing methods.
    Rodriguez C; Van Broeck J; Taminiau B; Delmée M; Daube G
    Microb Pathog; 2016 Aug; 97():59-78. PubMed ID: 27238460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of Clostridium difficile Physiopathology in Response to Cysteine Availability.
    Dubois T; Dancer-Thibonnier M; Monot M; Hamiot A; Bouillaut L; Soutourina O; Martin-Verstraete I; Dupuy B
    Infect Immun; 2016 Aug; 84(8):2389-405. PubMed ID: 27297391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bile acid sensitivity and in vivo virulence of clinical Clostridium difficile isolates.
    Lewis BB; Carter RA; Pamer EG
    Anaerobe; 2016 Oct; 41():32-36. PubMed ID: 27241781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel Clostridium difficile Anti-Toxin (TcdA and TcdB) Humanized Monoclonal Antibodies Demonstrate In Vitro Neutralization across a Broad Spectrum of Clinical Strains and In Vivo Potency in a Hamster Spore Challenge Model.
    Qiu H; Cassan R; Johnstone D; Han X; Joyee AG; McQuoid M; Masi A; Merluza J; Hrehorak B; Reid R; Kennedy K; Tighe B; Rak C; Leonhardt M; Dupas B; Saward L; Berry JD; Nykiforuk CL
    PLoS One; 2016; 11(6):e0157970. PubMed ID: 27336843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene transcription repression in Clostridium beijerinckii using CRISPR-dCas9.
    Wang Y; Zhang ZT; Seo SO; Lynn P; Lu T; Jin YS; Blaschek HP
    Biotechnol Bioeng; 2016 Dec; 113(12):2739-2743. PubMed ID: 27240718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SBRC-Nottingham: sustainable routes to platform chemicals from C1 waste gases.
    Burbidge A; Minton NP
    Biochem Soc Trans; 2016 Jun; 44(3):684-6. PubMed ID: 27284026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Signal Sequence of the Abundant Extracellular Metalloprotease PPEP-1 Can Be Used to Secrete Synthetic Reporter Proteins in Clostridium difficile.
    Oliveira Paiva AM; Friggen AH; Hossein-Javaheri S; Smits WK
    ACS Synth Biol; 2016 Dec; 5(12):1376-1382. PubMed ID: 27333161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding the mechanisms of faecal microbiota transplantation.
    Khoruts A; Sadowsky MJ
    Nat Rev Gastroenterol Hepatol; 2016 Sep; 13(9):508-16. PubMed ID: 27329806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elucidating the contributions of multiple aldehyde/alcohol dehydrogenases to butanol and ethanol production in Clostridium acetobutylicum.
    Dai Z; Dong H; Zhang Y; Li Y
    Sci Rep; 2016 Jun; 6():28189. PubMed ID: 27321949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glucosylation Drives the Innate Inflammatory Response to Clostridium difficile Toxin A.
    Cowardin CA; Jackman BM; Noor Z; Burgess SL; Feig AL; Petri WA
    Infect Immun; 2016 Aug; 84(8):2317-2323. PubMed ID: 27271747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Newly identified bacteriolytic enzymes that target a wide range of clinical isolates of Clostridium difficile.
    Mehta KK; Paskaleva EE; Wu X; Grover N; Mundra RV; Chen K; Zhang Y; Yang Z; Feng H; Dordick JS; Kane RS
    Biotechnol Bioeng; 2016 Dec; 113(12):2568-2576. PubMed ID: 27260850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The efficacy of thuricin CD, tigecycline, vancomycin, teicoplanin, rifampicin and nitazoxanide, independently and in paired combinations against Clostridium difficile biofilms and planktonic cells.
    Mathur H; Rea MC; Cotter PD; Hill C; Ross RP
    Gut Pathog; 2016; 8():20. PubMed ID: 27257437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ridinilazole: a novel therapy for Clostridium difficile infection.
    Vickers RJ; Tillotson G; Goldstein EJ; Citron DM; Garey KW; Wilcox MH
    Int J Antimicrob Agents; 2016 Aug; 48(2):137-43. PubMed ID: 27283730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.