BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

355 related articles for article (PubMed ID: 27234377)

  • 1. Potential Release of Manufactured Nano Objects During Sanding of Nano-Coated Wood Surfaces.
    Fransman W; Bekker C; Tromp P; Duis WB
    Ann Occup Hyg; 2016 Aug; 60(7):875-84. PubMed ID: 27234377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhalation exposure during spray application and subsequent sanding of a wood sealant containing zinc oxide nanoparticles.
    Cooper MR; West GH; Burrelli LG; Dresser D; Griffin KN; Segrave AM; Perrenoud J; Lippy BE
    J Occup Environ Hyg; 2017 Jul; 14(7):510-522. PubMed ID: 28406371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of dust release from epoxy and paint nanocomposites and conventional products during sanding and sawing.
    Gomez V; Levin M; Saber AT; Irusta S; Dal Maso M; Hanoi R; Santamaria J; Jensen KA; Wallin H; Koponen IK
    Ann Occup Hyg; 2014 Oct; 58(8):983-94. PubMed ID: 25030708
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of paint dust aerosol generated from mechanical abrasion of TiO
    Nored AW; Chalbot MG; Kavouras IG
    J Occup Environ Hyg; 2018 Sep; 15(9):629-640. PubMed ID: 29856686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relative Differences in Concentration Levels during Sawing and Drilling of Car Bumpers Containing MWCNT and Organic Pigment.
    Kuijpers E; Pronk A; Koivisto AJ; Jensen KA; Vermeulen R; Fransman W
    Ann Work Expo Health; 2019 Feb; 63(2):148-157. PubMed ID: 30615066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wood dust particle and mass concentrations and filtration efficiency in sanding of wood materials.
    Welling I; Lehtimäki M; Rautio S; Lähde T; Enbom S; Hynynen P; Hämeri K
    J Occup Environ Hyg; 2009 Feb; 6(2):90-8. PubMed ID: 19065389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of dust released from sanding conventional and nanoparticle-doped wall and wood coatings.
    Koponen IK; Jensen KA; Schneider T
    J Expo Sci Environ Epidemiol; 2011; 21(4):408-18. PubMed ID: 20485339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation rate and particle size distribution of wood dust by handheld sanding operation.
    Ojima J
    J Occup Health; 2016 Nov; 58(6):640-643. PubMed ID: 27725491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exposure to airborne nano-titanium dioxide during airless spray painting and sanding.
    West GH; Cooper MR; Burrelli LG; Dresser D; Lippy BE
    J Occup Environ Hyg; 2019 Mar; 16(3):218-228. PubMed ID: 30451647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of Determinants of Emission Potentially Affecting the Concentration of Airborne Nano-Objects and Their Agglomerates and Aggregates.
    Bekker C; Fransman W; Boessen R; Oerlemans A; Ottenbros IB; Vermeulen R
    Ann Work Expo Health; 2017 Jan; 61(1):98-109. PubMed ID: 28395316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of nanoparticle release from surface coatings by the simulation of a sanding process.
    Göhler D; Stintz M; Hillemann L; Vorbau M
    Ann Occup Hyg; 2010 Aug; 54(6):615-24. PubMed ID: 20696941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An occupational exposure assessment for engineered nanoparticles used in semiconductor fabrication.
    Shepard MN; Brenner S
    Ann Occup Hyg; 2014 Mar; 58(2):251-65. PubMed ID: 24284882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of Multi-walled Carbon Nanotubes and Carbon Nanodiscs on Workplace Surfaces at a Small-Scale Producer.
    Hedmer M; Ludvigsson L; Isaxon C; Nilsson PT; Skaug V; Bohgard M; Pagels JH; Messing ME; Tinnerberg H
    Ann Occup Hyg; 2015 Aug; 59(7):836-52. PubMed ID: 26122528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Personal exposure to ultrafine particles in the workplace: exploring sampling techniques and strategies.
    Brouwer DH; Gijsbers JH; Lurvink MW
    Ann Occup Hyg; 2004 Jul; 48(5):439-53. PubMed ID: 15240340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physical chemical properties and cell toxicity of sanding copper-treated lumber.
    Sisler JD; Qi C; McKinney W; Shaffer J; Andrew M; Lee T; Thomas T; Castranova V; Mercer RR; Qian Y
    J Occup Environ Hyg; 2018 Apr; 15(4):311-321. PubMed ID: 29300681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aerosol Emission Monitoring and Assessment of Potential Exposure to Multi-walled Carbon Nanotubes in the Manufacture of Polymer Nanocomposites.
    Thompson D; Chen SC; Wang J; Pui DY
    Ann Occup Hyg; 2015 Nov; 59(9):1135-51. PubMed ID: 26209597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-Time Emission and Exposure Measurements of Multi-walled Carbon Nanotubes during Production, Power Sawing, and Testing of Epoxy-Based Nanocomposites.
    Hedmer M; Lovén K; Martinsson J; Messing ME; Gudmundsson A; Pagels J
    Ann Work Expo Health; 2022 Aug; 66(7):878-894. PubMed ID: 35297480
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Breathing zone particle size and lead concentration from sanding operations to remove lead based paints.
    Alexander WK; Carpenter RL; Kimmel EC
    Drug Chem Toxicol; 1999 Feb; 22(1):41-56. PubMed ID: 10189570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon Nanotube Emissions from Arc Discharge Production: Classification of Particle Types with Electron Microscopy and Comparison with Direct Reading Techniques.
    Ludvigsson L; Isaxon C; Nilsson PT; Tinnerberg H; Messing ME; Rissler J; Skaug V; Gudmundsson A; Bohgard M; Hedmer M; Pagels J
    Ann Occup Hyg; 2016 May; 60(4):493-512. PubMed ID: 26748380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement of the physical properties of aerosols in a fullerene factory for inhalation exposure assessment.
    Fujitani Y; Kobayashi T; Arashidani K; Kunugita N; Suemura K
    J Occup Environ Hyg; 2008 Jun; 5(6):380-9. PubMed ID: 18401789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.