BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 27234879)

  • 1. Directed evolution of adenylosuccinate synthetase from Bacillus subtilis and its application in metabolic engineering.
    Wang X; Wang G; Li X; Fu J; Chen T; Wang Z; Zhao X
    J Biotechnol; 2016 Aug; 231():115-121. PubMed ID: 27234879
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accumulation of gene-targeted Bacillus subtilis mutations that enhance fermentative inosine production.
    Asahara T; Mori Y; Zakataeva NP; Livshits VA; Yoshida K; Matsuno K
    Appl Microbiol Biotechnol; 2010 Aug; 87(6):2195-207. PubMed ID: 20524113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nucleotide mutations in purA gene and pur operon promoter discovered in guanosine- and inosine-producing Bacillus subtilis strains.
    Qian J; Cai X; Chu J; Zhuang Y; Zhang S
    Biotechnol Lett; 2006 Jun; 28(12):937-41. PubMed ID: 16786280
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased fermentative adenosine production by gene-targeted Bacillus subtilis mutation.
    Li B; Yan ZY; Liu XN; Zhou J; Wu XY; Wei P; Jia HH; Yong XY
    J Biotechnol; 2019 Jun; 298():1-4. PubMed ID: 30974118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Relationship between key enzyme activities of inosine-producing pathway and inosine accumulation].
    Song Y; Cai X; Chu J; Zhuang Y; Zhang S
    Wei Sheng Wu Xue Bao; 2003 Jun; 43(3):361-5. PubMed ID: 16279203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cloning and sequence of Bacillus subtilis purA and guaA, involved in the conversion of IMP to AMP and GMP.
    Mäntsälä P; Zalkin H
    J Bacteriol; 1992 Mar; 174(6):1883-90. PubMed ID: 1312531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Convergent evolution of nitrogen-adding enzymes in the purine nucleotide biosynthetic pathway, based on structural analysis of adenylosuccinate synthetase (PurA).
    Sampei GI; Ishii H; Taka H; Kawai G
    J Gen Appl Microbiol; 2023 Nov; 69(2):109-116. PubMed ID: 37302828
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased production of inosine and guanosine by means of metabolic engineering of the purine pathway in Ashbya gossypii.
    Ledesma-Amaro R; Buey RM; Revuelta JL
    Microb Cell Fact; 2015 Apr; 14():58. PubMed ID: 25889888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of levels of purine biosynthetic enzymes in Bacillus subtilis: effects of changing purine nucleotide pools.
    Saxild HH; Nygaard P
    J Gen Microbiol; 1991 Oct; 137(10):2387-94. PubMed ID: 1722815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deregulation of purine pathway in Bacillus subtilis and its use in riboflavin biosynthesis.
    Shi T; Wang Y; Wang Z; Wang G; Liu D; Fu J; Chen T; Zhao X
    Microb Cell Fact; 2014 Jul; 13():101. PubMed ID: 25023436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. De novo engineering and metabolic flux analysis of inosine biosynthesis in Bacillus subtilis.
    Li H; Zhang G; Deng A; Chen N; Wen T
    Biotechnol Lett; 2011 Aug; 33(8):1575-80. PubMed ID: 21424839
    [TBL] [Abstract][Full Text] [Related]  

  • 12. De novo engineering riboflavin production Bacillus subtilis by overexpressing the downstream genes in the purine biosynthesis pathway.
    Liu C; Xia M; Fang H; Xu F; Wang S; Zhang D
    Microb Cell Fact; 2024 May; 23(1):159. PubMed ID: 38822377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purification and cDNA-derived sequence of adenylosuccinate synthetase from Dictyostelium discoideum.
    Wiesmüller L; Wittbrodt J; Noegel AA; Schleicher M
    J Biol Chem; 1991 Feb; 266(4):2480-5. PubMed ID: 1989999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene-enzyme relationships of the purine biosynthetic pathway in Bacillus subtilis.
    Saxild HH; Nygaard P
    Mol Gen Genet; 1988 Jan; 211(1):160-7. PubMed ID: 3125411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of Escherichia coli purA by purine repressor, one component of a dual control mechanism.
    He B; Zalkin H
    J Bacteriol; 1994 Feb; 176(4):1009-13. PubMed ID: 8106311
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutational analysis of the Bacillus subtilis purA operator site.
    Rappu P; Leppihalme M; Mäntsälä P
    Curr Microbiol; 2005 Nov; 51(5):322-6. PubMed ID: 16163456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of various genotype characteristics for inosine accumulation in Escherichia coli W3110.
    Matsui H; Kawasaki H; Shimaoka M; Kurahashi O
    Biosci Biotechnol Biochem; 2001 Mar; 65(3):570-8. PubMed ID: 11330670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [A new pleiotropic mutation affecting purine metabolism, sporulation and biosynthesis of exoenzymes in Bacillus subtilis].
    Maznitsa II; Nudler AA; Burd GI
    Genetika; 1991 Jun; 27(6):983-90. PubMed ID: 1773939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of a mutant Bacillus subtilis adenylosuccinate lyase equivalent to a mutant enzyme found in human adenylosuccinate lyase deficiency: asparagine 276 plays an important structural role.
    Palenchar JB; Colman RF
    Biochemistry; 2003 Feb; 42(7):1831-41. PubMed ID: 12590570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Site-directed mutagenesis of the phosphate-binding consensus sequence in Escherichia coli adenylosuccinate synthetase.
    Liu F; Dong Q; Fromm HJ
    J Biol Chem; 1992 Feb; 267(4):2388-92. PubMed ID: 1733940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.