BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 27235147)

  • 1. An Elk transcription factor is required for Runx-dependent survival signaling in the sea urchin embryo.
    Rizzo F; Coffman JA; Arnone MI
    Dev Biol; 2016 Aug; 416(1):173-186. PubMed ID: 27235147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Runx expression is mitogenic and mutually linked to Wnt activity in blastula-stage sea urchin embryos.
    Robertson AJ; Coluccio A; Knowlton P; Dickey-Sims C; Coffman JA
    PLoS One; 2008; 3(11):e3770. PubMed ID: 19020668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CBFbeta is a facultative Runx partner in the sea urchin embryo.
    Robertson AJ; Dickey-Sims C; Ransick A; Rupp DE; McCarthy JJ; Coffman JA
    BMC Biol; 2006 Feb; 4():4. PubMed ID: 16469111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sea urchin akt activity is Runx-dependent and required for post-cleavage stage cell division.
    Robertson AJ; Coluccio A; Jensen S; Rydlizky K; Coffman JA
    Biol Open; 2013 May; 2(5):472-8. PubMed ID: 23789095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and developmental expression of the ets gene family in the sea urchin (Strongylocentrotus purpuratus).
    Rizzo F; Fernandez-Serra M; Squarzoni P; Archimandritis A; Arnone MI
    Dev Biol; 2006 Dec; 300(1):35-48. PubMed ID: 16997294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Runx-dependent expression of PKC is critical for cell survival in the sea urchin embryo.
    Dickey-Sims C; Robertson AJ; Rupp DE; McCarthy JJ; Coffman JA
    BMC Biol; 2005 Aug; 3():18. PubMed ID: 16076398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nuclear beta-catenin-dependent Wnt8 signaling in vegetal cells of the early sea urchin embryo regulates gastrulation and differentiation of endoderm and mesodermal cell lineages.
    Wikramanayake AH; Peterson R; Chen J; Huang L; Bince JM; McClay DR; Klein WH
    Genesis; 2004 Jul; 39(3):194-205. PubMed ID: 15282746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of developmental phenotypes produced by morpholino antisense targeting of a sea urchin Runx gene.
    Coffman JA; Dickey-Sims C; Haug JS; McCarthy JJ; Robertson AJ
    BMC Biol; 2004 May; 2():6. PubMed ID: 15132741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Raf/MEK/ERK signaling pathway is required for development of the sea urchin embryo micromere lineage through phosphorylation of the transcription factor Ets.
    Röttinger E; Besnardeau L; Lepage T
    Development; 2004 Mar; 131(5):1075-87. PubMed ID: 14973284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temporal activation of the sea urchin late H1 gene requires stage-specific phosphorylation of the embryonic transcription factor SSAP.
    Li Z; Childs G
    Mol Cell Biol; 1999 May; 19(5):3684-95. PubMed ID: 10207092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The expression of SpRunt during sea urchin embryogenesis.
    Robertson AJ; Dickey CE; McCarthy JJ; Coffman JA
    Mech Dev; 2002 Sep; 117(1-2):327-30. PubMed ID: 12204279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Both basal and ontogenic promoter elements affect the timing and level of expression of a sea urchin H1 gene during early embryogenesis.
    Lai ZC; Maxson R; Childs G
    Genes Dev; 1988 Feb; 2(2):173-83. PubMed ID: 3360321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Signal-dependent regulation of the sea urchin skeletogenic gene regulatory network.
    Sun Z; Ettensohn CA
    Gene Expr Patterns; 2014 Nov; 16(2):93-103. PubMed ID: 25460514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Specific functions of the Wnt signaling system in gene regulatory networks throughout the early sea urchin embryo.
    Cui M; Siriwon N; Li E; Davidson EH; Peter IS
    Proc Natl Acad Sci U S A; 2014 Nov; 111(47):E5029-38. PubMed ID: 25385617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complexity and organization of DNA-protein interactions in the 5'-regulatory region of an endoderm-specific marker gene in the sea urchin embryo.
    Yuh CH; Ransick A; Martinez P; Britten RJ; Davidson EH
    Mech Dev; 1994 Aug; 47(2):165-86. PubMed ID: 7811639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the SpHE promoter that is spatially regulated along the animal-vegetal axis of the sea urchin embryo.
    Wei Z; Angerer LM; Gagnon ML; Angerer RC
    Dev Biol; 1995 Sep; 171(1):195-211. PubMed ID: 7556896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SpRunt-1, a new member of the runt domain family of transcription factors, is a positive regulator of the aboral ectoderm-specific CyIIIA gene in sea urchin embryos.
    Coffman JA; Kirchhamer CV; Harrington MG; Davidson EH
    Dev Biol; 1996 Feb; 174(1):43-54. PubMed ID: 8626020
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A regulatory gene network that directs micromere specification in the sea urchin embryo.
    Oliveri P; Carrick DM; Davidson EH
    Dev Biol; 2002 Jun; 246(1):209-28. PubMed ID: 12027443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple SSAP binding sites constitute the stage-specific enhancer of the sea urchin late H1beta gene.
    Edelmann L; Childs G
    Gene Expr; 1998; 7(3):133-47. PubMed ID: 9840807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SpHnf6, a transcription factor that executes multiple functions in sea urchin embryogenesis.
    Otim O; Amore G; Minokawa T; McClay DR; Davidson EH
    Dev Biol; 2004 Sep; 273(2):226-43. PubMed ID: 15328009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.