These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
9. Characterization of peripheral blood acetylcholine receptor-binding B cells in experimental myasthenia gravis. Allman W; Saini SS; Tuzun E; Christadoss P Cell Immunol; 2011; 271(2):292-8. PubMed ID: 21861992 [TBL] [Abstract][Full Text] [Related]
10. Antibodies against muscle-specific kinase impair both presynaptic and postsynaptic functions in a murine model of myasthenia gravis. Mori S; Kubo S; Akiyoshi T; Yamada S; Miyazaki T; Hotta H; Desaki J; Kishi M; Konishi T; Nishino Y; Miyazawa A; Maruyama N; Shigemoto K Am J Pathol; 2012 Feb; 180(2):798-810. PubMed ID: 22142810 [TBL] [Abstract][Full Text] [Related]
11. Engineered agrin attenuates the severity of experimental autoimmune myasthenia gravis. Li Z; Li M; Wood K; Hettwer S; Muley SA; Shi FD; Liu Q; Ladha SS Muscle Nerve; 2018 May; 57(5):814-820. PubMed ID: 29193204 [TBL] [Abstract][Full Text] [Related]
12. Effects of Teriflunomide on B Cell Subsets in MuSK-Induced Experimental Autoimmune Myasthenia Gravis and Multiple Sclerosis. Yilmaz V; Ulusoy C; Hajtovic S; Turkoglu R; Kurtuncu M; Tzartos J; Lazaridis K; Tuzun E Immunol Invest; 2021 Aug; 50(6):671-684. PubMed ID: 32597289 [TBL] [Abstract][Full Text] [Related]
13. C57BL/6 mice genetically deficient in IL-12/IL-23 and IFN-gamma are susceptible to experimental autoimmune myasthenia gravis, suggesting a pathogenic role of non-Th1 cells. Wang W; Milani M; Ostlie N; Okita D; Agarwal RK; Caspi RR; Conti-Fine BM J Immunol; 2007 Jun; 178(11):7072-80. PubMed ID: 17513756 [TBL] [Abstract][Full Text] [Related]
14. Antibody effector mechanisms in myasthenia gravis-pathogenesis at the neuromuscular junction. Gomez AM; Van Den Broeck J; Vrolix K; Janssen SP; Lemmens MA; Van Der Esch E; Duimel H; Frederik P; Molenaar PC; Martínez-Martínez P; De Baets MH; Losen M Autoimmunity; 2010 Aug; 43(5-6):353-70. PubMed ID: 20380584 [TBL] [Abstract][Full Text] [Related]
15. Decreased bone mineral density in experimental myasthenia gravis in C57BL/6 mice. Oshima M; Iida-Klein A; Maruta T; Deitiker PR; Atassi MZ Autoimmunity; 2017 Sep; 50(6):346-353. PubMed ID: 28850269 [TBL] [Abstract][Full Text] [Related]
16. CD4 costimulation is not required in a novel LPS-enhanced model of myasthenia gravis. Allman W; Qi H; Saini SS; Li J; Tuzun E; Christadoss P J Neuroimmunol; 2012 Aug; 249(1-2):1-7. PubMed ID: 22626443 [TBL] [Abstract][Full Text] [Related]
17. [Experimental autoimmune model of muscle-specific kinase specific myasthenia gravis in rats]. Chen Y; Wang HB; Wang YJ Zhonghua Yi Xue Za Zhi; 2013 May; 93(17):1292-6. PubMed ID: 24029475 [TBL] [Abstract][Full Text] [Related]
18. Genetic deficiency of estrogen receptor alpha fails to influence experimental autoimmune myasthenia gravis pathogenesis. Qi H; Li J; Allman W; Saini SS; Tüzün E; Wu X; Estes DM; Christadoss P J Neuroimmunol; 2011 May; 234(1-2):165-7. PubMed ID: 21481948 [TBL] [Abstract][Full Text] [Related]
19. CD4+ T and B cells cooperate in the immunoregulation of Experimental Autoimmune Myasthenia Gravis. Milani M; Ostlie N; Wu H; Wang W; Conti-Fine BM J Neuroimmunol; 2006 Oct; 179(1-2):152-62. PubMed ID: 16945426 [TBL] [Abstract][Full Text] [Related]
20. Passive and active immunization models of MuSK-Ab positive myasthenia: electrophysiological evidence for pre and postsynaptic defects. Viegas S; Jacobson L; Waters P; Cossins J; Jacob S; Leite MI; Webster R; Vincent A Exp Neurol; 2012 Apr; 234(2):506-12. PubMed ID: 22326541 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]