These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
328 related articles for article (PubMed ID: 27235354)
21. Interferon gamma (IFN-gamma) is necessary for the genesis of acetylcholine receptor-induced clinical experimental autoimmune myasthenia gravis in mice. Balasa B; Deng C; Lee J; Bradley LM; Dalton DK; Christadoss P; Sarvetnick N J Exp Med; 1997 Aug; 186(3):385-91. PubMed ID: 9236190 [TBL] [Abstract][Full Text] [Related]
22. Novel complement inhibitor limits severity of experimentally myasthenia gravis. Soltys J; Kusner LL; Young A; Richmonds C; Hatala D; Gong B; Shanmugavel V; Kaminski HJ Ann Neurol; 2009 Jan; 65(1):67-75. PubMed ID: 19194881 [TBL] [Abstract][Full Text] [Related]
23. Relation of HLA-DRB1 to IgG4 autoantibody and cytokine production in muscle-specific tyrosine kinase myasthenia gravis (MuSK-MG). Çebi M; Durmuş H; Yılmaz V; Yentür SP; Aysal F; Oflazer P; Parman Y; Deymeer F; Saruhan-Direskeneli G Clin Exp Immunol; 2019 Aug; 197(2):214-221. PubMed ID: 30929252 [TBL] [Abstract][Full Text] [Related]
24. Silencing of FCRLB by shRNA ameliorates MuSK-induced EAMG in mice. Koral G; Ulusoy C; Cossins J; Lazaridis K; Türkoğlu R; Dong YY; Tüzün E; Yılmaz V J Neuroimmunol; 2023 Oct; 383():578195. PubMed ID: 37660538 [TBL] [Abstract][Full Text] [Related]
25. Injection of inactive Bordetella pertussis and complete Freund's adjuvant with Torpedo californica AChR increases the occurrence of experimental autoimmune myasthenia gravis in C57BL/6 mice. Maruta T; Oshima M; Mosier DR; Atassi MZ Autoimmunity; 2017 Aug; 50(5):293-305. PubMed ID: 28548588 [TBL] [Abstract][Full Text] [Related]
26. Experimental autoimmune myasthenia gravis in naive non-obese diabetic (NOD/LtJ) mice: susceptibility associated with natural IgG antibodies to the acetylcholine receptor. Quintana FJ; Pitashny M; Cohen IR Int Immunol; 2003 Jan; 15(1):11-6. PubMed ID: 12502721 [TBL] [Abstract][Full Text] [Related]
27. Clinical fluctuations in MuSK myasthenia gravis are related to antigen-specific IgG4 instead of IgG1. Niks EH; van Leeuwen Y; Leite MI; Dekker FW; Wintzen AR; Wirtz PW; Vincent A; van Tol MJ; Jol-van der Zijde CM; Verschuuren JJ J Neuroimmunol; 2008 Mar; 195(1-2):151-6. PubMed ID: 18384886 [TBL] [Abstract][Full Text] [Related]
28. Muscle-specific regulation of the mTOR signaling pathway in MuSK antibody seropositive (MuSK+) experimental autoimmune Myasthenia gravis (EAMG). Chauhan M; Punga T; Punga AR Neurosci Res; 2013; 77(1-2):102-9. PubMed ID: 23933211 [TBL] [Abstract][Full Text] [Related]
29. Passive transfer models of myasthenia gravis with muscle-specific kinase antibodies. Verschuuren JJGM; Plomp JJ; Burden SJ; Zhang W; Fillié-Grijpma YE; Stienstra-van Es IE; Niks EH; Losen M; van der Maarel SM; Huijbers MG Ann N Y Acad Sci; 2018 Feb; 1413(1):111-118. PubMed ID: 29356029 [TBL] [Abstract][Full Text] [Related]
30. Muscle-selective synaptic disassembly and reorganization in MuSK antibody positive MG mice. Punga AR; Lin S; Oliveri F; Meinen S; Rüegg MA Exp Neurol; 2011 Aug; 230(2):207-17. PubMed ID: 21565192 [TBL] [Abstract][Full Text] [Related]
31. The mouse passive-transfer model of MuSK myasthenia gravis: disrupted MuSK signaling causes synapse failure. Ghazanfari N; Trajanovska S; Morsch M; Liang SX; Reddel SW; Phillips WD Ann N Y Acad Sci; 2018 Jan; 1412(1):54-61. PubMed ID: 29125188 [TBL] [Abstract][Full Text] [Related]
32. Efgartigimod improves muscle weakness in a mouse model for muscle-specific kinase myasthenia gravis. Huijbers MG; Plomp JJ; van Es IE; Fillié-Grijpma YE; Kamar-Al Majidi S; Ulrichts P; de Haard H; Hofman E; van der Maarel SM; Verschuuren JJ Exp Neurol; 2019 Jul; 317():133-143. PubMed ID: 30851266 [TBL] [Abstract][Full Text] [Related]
33. IgG4-mediated autoimmune diseases: a niche of antibody-mediated disorders. Huijbers MG; Plomp JJ; van der Maarel SM; Verschuuren JJ Ann N Y Acad Sci; 2018 Feb; 1413(1):92-103. PubMed ID: 29377160 [TBL] [Abstract][Full Text] [Related]
34. Tumor necrosis factor receptor-1 is critically involved in the development of experimental autoimmune myasthenia gravis. Wang HB; Li H; Shi FD; Chambers BJ; Link H; Ljunggren HG Int Immunol; 2000 Oct; 12(10):1381-8. PubMed ID: 11007755 [TBL] [Abstract][Full Text] [Related]
35. Effects of the ß2-adrenoceptor agonist, albuterol, in a mouse model of anti-MuSK myasthenia gravis. Ghazanfari N; Morsch M; Tse N; Reddel SW; Phillips WD PLoS One; 2014; 9(2):e87840. PubMed ID: 24505322 [TBL] [Abstract][Full Text] [Related]
36. Acetylcholine receptor-induced experimental myasthenia gravis: what have we learned from animal models after three decades? Baggi F; Antozzi C; Toscani C; Cordiglieri C Arch Immunol Ther Exp (Warsz); 2012 Feb; 60(1):19-30. PubMed ID: 22159475 [TBL] [Abstract][Full Text] [Related]