BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 27235627)

  • 1. Divalent ions attenuate DNA synthesis by human DNA polymerase α by changing the structure of the template/primer or by perturbing the polymerase reaction.
    Zhang Y; Baranovskiy AG; Tahirov ET; Tahirov TH; Pavlov YI
    DNA Repair (Amst); 2016 Jul; 43():24-33. PubMed ID: 27235627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activity and fidelity of human DNA polymerase α depend on primer structure.
    Baranovskiy AG; Duong VN; Babayeva ND; Zhang Y; Pavlov YI; Anderson KS; Tahirov TH
    J Biol Chem; 2018 May; 293(18):6824-6843. PubMed ID: 29555682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mnemonic aspects of Escherichia coli DNA polymerase I. Interaction with one template influences the next interaction with another template.
    Papanicolaou C; Lecomte P; Ninio J
    J Mol Biol; 1986 Jun; 189(3):435-48. PubMed ID: 3537308
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A mechanistic model of primer synthesis from catalytic structures of DNA polymerase α-primase.
    Mullins EA; Salay LE; Durie CL; Bradley NP; Jackman JE; Ohi MD; Chazin WJ; Eichman BF
    Nat Struct Mol Biol; 2024 May; 31(5):777-790. PubMed ID: 38491139
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The C-terminal domain of the DNA polymerase catalytic subunit regulates the primase and polymerase activities of the human DNA polymerase α-primase complex.
    Zhang Y; Baranovskiy AG; Tahirov TH; Pavlov YI
    J Biol Chem; 2014 Aug; 289(32):22021-34. PubMed ID: 24962573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Significance of the O-helix residues of Escherichia coli DNA polymerase I in DNA synthesis: dynamics of the dNTP binding pocket.
    Kaushik N; Pandey VN; Modak MJ
    Biochemistry; 1996 Jun; 35(22):7256-66. PubMed ID: 8679555
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human DNA polymerase α in binary complex with a DNA:DNA template-primer.
    Coloma J; Johnson RE; Prakash L; Prakash S; Aggarwal AK
    Sci Rep; 2016 Apr; 6():23784. PubMed ID: 27032819
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A structural basis for metal ion mutagenicity and nucleotide selectivity in human DNA polymerase beta.
    Pelletier H; Sawaya MR; Wolfle W; Wilson SH; Kraut J
    Biochemistry; 1996 Oct; 35(39):12762-77. PubMed ID: 8841119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polymerization behavior of Klenow fragment and Taq DNA polymerase in short primer extension reactions.
    Zhao G; Guan Y
    Acta Biochim Biophys Sin (Shanghai); 2010 Oct; 42(10):722-8. PubMed ID: 20829187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of the replicating complex of a pol alpha family DNA polymerase.
    Franklin MC; Wang J; Steitz TA
    Cell; 2001 Jun; 105(5):657-67. PubMed ID: 11389835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Local conformations and competitive binding affinities of single- and double-stranded primer-template DNA at the polymerization and editing active sites of DNA polymerases.
    Datta K; Johnson NP; LiCata VJ; von Hippel PH
    J Biol Chem; 2009 Jun; 284(25):17180-17193. PubMed ID: 19411253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structures of ternary complexes of rat DNA polymerase beta, a DNA template-primer, and ddCTP.
    Pelletier H; Sawaya MR; Kumar A; Wilson SH; Kraut J
    Science; 1994 Jun; 264(5167):1891-903. PubMed ID: 7516580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Incoming nucleotide binds to Klenow ternary complex leading to stable physical sequestration of preceding dNTP on DNA.
    Ramanathan S; Chary KV; Rao BJ
    Nucleic Acids Res; 2001 May; 29(10):2097-105. PubMed ID: 11353079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and functional insight into mismatch extension by human DNA polymerase α.
    Baranovskiy AG; Babayeva ND; Lisova AE; Morstadt LM; Tahirov TH
    Proc Natl Acad Sci U S A; 2022 Apr; 119(17):e2111744119. PubMed ID: 35467978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exonuclease-polymerase active site partitioning of primer-template DNA strands and equilibrium Mg2+ binding properties of bacteriophage T4 DNA polymerase.
    Beechem JM; Otto MR; Bloom LB; Eritja R; Reha-Krantz LJ; Goodman MF
    Biochemistry; 1998 Jul; 37(28):10144-55. PubMed ID: 9665720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Pol α-primase complex.
    Pellegrini L
    Subcell Biochem; 2012; 62():157-69. PubMed ID: 22918585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calf thymus DNA polymerase alpha-primase: "communication" and primer-template movement between the two active sites.
    Sheaff RJ; Kuchta RD; Ilsley D
    Biochemistry; 1994 Mar; 33(8):2247-54. PubMed ID: 8117681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Initiation of DNA replication by DNA polymerases from primers forming a triple helix.
    Rocher C; Dalibart R; Letellier T; Précigoux G; Lestienne P
    Nucleic Acids Res; 2001 Aug; 29(16):3320-6. PubMed ID: 11504869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism for priming DNA synthesis by yeast DNA polymerase α.
    Perera RL; Torella R; Klinge S; Kilkenny ML; Maman JD; Pellegrini L
    Elife; 2013 Apr; 2():e00482. PubMed ID: 23599895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal binding to DNA polymerase I, its large fragment, and two 3',5'-exonuclease mutants of the large fragment.
    Mullen GP; Serpersu EH; Ferrin LJ; Loeb LA; Mildvan AS
    J Biol Chem; 1990 Aug; 265(24):14327-34. PubMed ID: 2201684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.