These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 27235802)
1. Evolving classification of intensive care patients from event data. Last M; Tosas O; Gallo Cassarino T; Kozlakidis Z; Edgeworth J Artif Intell Med; 2016 May; 69():22-32. PubMed ID: 27235802 [TBL] [Abstract][Full Text] [Related]
2. Mortality prediction in intensive care units (ICUs) using a deep rule-based fuzzy classifier. Davoodi R; Moradi MH J Biomed Inform; 2018 Mar; 79():48-59. PubMed ID: 29471111 [TBL] [Abstract][Full Text] [Related]
3. Statistical process control for monitoring standardized mortality ratios of a classification tree model. Minne L; Eslami S; de Keizer N; de Jonge E; de Rooij SE; Abu-Hanna A Methods Inf Med; 2012; 51(4):353-8. PubMed ID: 22773038 [TBL] [Abstract][Full Text] [Related]
4. Timing of onset and burden of persistent critical illness in Australia and New Zealand: a retrospective, population-based, observational study. Iwashyna TJ; Hodgson CL; Pilcher D; Bailey M; van Lint A; Chavan S; Bellomo R Lancet Respir Med; 2016 Jul; 4(7):566-573. PubMed ID: 27155770 [TBL] [Abstract][Full Text] [Related]
5. Rating organ failure via adverse events using data mining in the intensive care unit. Silva A; Cortez P; Santos MF; Gomes L; Neves J Artif Intell Med; 2008 Jul; 43(3):179-93. PubMed ID: 18486459 [TBL] [Abstract][Full Text] [Related]
7. Early prediction of ICU readmissions using classification algorithms. Loreto M; Lisboa T; Moreira VP Comput Biol Med; 2020 Mar; 118():103636. PubMed ID: 32174313 [TBL] [Abstract][Full Text] [Related]
8. Development and validation of an electronic medical record-based alert score for detection of inpatient deterioration outside the ICU. Kipnis P; Turk BJ; Wulf DA; LaGuardia JC; Liu V; Churpek MM; Romero-Brufau S; Escobar GJ J Biomed Inform; 2016 Dec; 64():10-19. PubMed ID: 27658885 [TBL] [Abstract][Full Text] [Related]
9. Multi-objective evolutionary algorithms for fuzzy classification in survival prediction. Jiménez F; Sánchez G; Juárez JM Artif Intell Med; 2014 Mar; 60(3):197-219. PubMed ID: 24525210 [TBL] [Abstract][Full Text] [Related]
10. Mortality assessment in intensive care units via adverse events using artificial neural networks. Silva A; Cortez P; Santos MF; Gomes L; Neves J Artif Intell Med; 2006 Mar; 36(3):223-34. PubMed ID: 16213693 [TBL] [Abstract][Full Text] [Related]
11. Early hospital mortality prediction of intensive care unit patients using an ensemble learning approach. Awad A; Bader-El-Den M; McNicholas J; Briggs J Int J Med Inform; 2017 Dec; 108():185-195. PubMed ID: 29132626 [TBL] [Abstract][Full Text] [Related]
12. Statistical geometry based prediction of nonsynonymous SNP functional effects using random forest and neuro-fuzzy classifiers. Barenboim M; Masso M; Vaisman II; Jamison DC Proteins; 2008 Jun; 71(4):1930-9. PubMed ID: 18186470 [TBL] [Abstract][Full Text] [Related]
13. Machine learning to predict 30-day quality-adjusted survival in critically ill patients with cancer. Santos HGD; Zampieri FG; Normilio-Silva K; Silva GTD; Lima ACP; Cavalcanti AB; Chiavegatto Filho ADP J Crit Care; 2020 Feb; 55():73-78. PubMed ID: 31715534 [TBL] [Abstract][Full Text] [Related]
14. Multicenter Comparison of Machine Learning Methods and Conventional Regression for Predicting Clinical Deterioration on the Wards. Churpek MM; Yuen TC; Winslow C; Meltzer DO; Kattan MW; Edelson DP Crit Care Med; 2016 Feb; 44(2):368-74. PubMed ID: 26771782 [TBL] [Abstract][Full Text] [Related]
15. Simplified prognostic model for critically ill patients in resource limited settings in South Asia. Haniffa R; Mukaka M; Munasinghe SB; De Silva AP; Jayasinghe KSA; Beane A; de Keizer N; Dondorp AM Crit Care; 2017 Oct; 21(1):250. PubMed ID: 29041985 [TBL] [Abstract][Full Text] [Related]
16. A comparison of performance of mathematical predictive methods for medical diagnosis: identifying acute cardiac ischemia among emergency department patients. Selker HP; Griffith JL; Patil S; Long WJ; D'Agostino RB J Investig Med; 1995 Oct; 43(5):468-76. PubMed ID: 8528758 [TBL] [Abstract][Full Text] [Related]
17. Heart rate time series characteristics for early detection of infections in critically ill patients. Tambuyzer T; Guiza F; Boonen E; Meersseman P; Vervenne H; Hansen TK; Bjerre M; Van den Berghe G; Berckmans D; Aerts JM; Meyfroidt G J Clin Monit Comput; 2017 Apr; 31(2):407-415. PubMed ID: 27039298 [TBL] [Abstract][Full Text] [Related]
18. A novel time series analysis approach for prediction of dialysis in critically ill patients using echo-state networks. Verplancke T; Van Looy S; Steurbaut K; Benoit D; De Turck F; De Moor G; Decruyenaere J BMC Med Inform Decis Mak; 2010 Jan; 10():4. PubMed ID: 20092639 [TBL] [Abstract][Full Text] [Related]
19. Performance comparison between Logistic regression, decision trees, and multilayer perceptron in predicting peripheral neuropathy in type 2 diabetes mellitus. Li CP; Zhi XY; Ma J; Cui Z; Zhu ZL; Zhang C; Hu LP Chin Med J (Engl); 2012 Mar; 125(5):851-7. PubMed ID: 22490586 [TBL] [Abstract][Full Text] [Related]
20. Comparison between logistic regression and neural networks to predict death in patients with suspected sepsis in the emergency room. Jaimes F; Farbiarz J; Alvarez D; Martínez C Crit Care; 2005 Apr; 9(2):R150-6. PubMed ID: 15774048 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]