BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 27235978)

  • 1. Sustained delivery by a cyclodextrin material-based nanocarrier potentiates antiatherosclerotic activity of rapamycin via selectively inhibiting mTORC1 in mice.
    Dou Y; Guo J; Chen Y; Han S; Xu X; Shi Q; Jia Y; Liu Y; Deng Y; Wang R; Li X; Zhang J
    J Control Release; 2016 Aug; 235():48-62. PubMed ID: 27235978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-proinflammatory and responsive nanoplatforms for targeted treatment of atherosclerosis.
    Dou Y; Chen Y; Zhang X; Xu X; Chen Y; Guo J; Zhang D; Wang R; Li X; Zhang J
    Biomaterials; 2017 Oct; 143():93-108. PubMed ID: 28778000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoparticles responsive to the inflammatory microenvironment for targeted treatment of arterial restenosis.
    Feng S; Hu Y; Peng S; Han S; Tao H; Zhang Q; Xu X; Zhang J; Hu H
    Biomaterials; 2016 Oct; 105():167-184. PubMed ID: 27522252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A pH/ROS dual-responsive and targeting nanotherapy for vascular inflammatory diseases.
    Zhang R; Liu R; Liu C; Pan L; Qi Y; Cheng J; Guo J; Jia Y; Ding J; Zhang J; Hu H
    Biomaterials; 2020 Feb; 230():119605. PubMed ID: 31740099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapamycin-Loaded Biomimetic Nanoparticles Reverse Vascular Inflammation.
    Boada C; Zinger A; Tsao C; Zhao P; Martinez JO; Hartman K; Naoi T; Sukhoveshin R; Sushnitha M; Molinaro R; Trachtenberg B; Cooke JP; Tasciotti E
    Circ Res; 2020 Jan; 126(1):25-37. PubMed ID: 31647755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeted Therapy of Atherosclerosis by a Broad-Spectrum Reactive Oxygen Species Scavenging Nanoparticle with Intrinsic Anti-inflammatory Activity.
    Wang Y; Li L; Zhao W; Dou Y; An H; Tao H; Xu X; Jia Y; Lu S; Zhang J; Hu H
    ACS Nano; 2018 Sep; 12(9):8943-8960. PubMed ID: 30114351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering of Biocompatible pH-Responsive Nanovehicles from Acetalated Cyclodextrins as Effective Delivery Systems for Tumor Therapy.
    Zhang D; Wei Y; Chen K; Gong H; Han S; Guo J; Li X; Zhang J
    J Biomed Nanotechnol; 2015 Jun; 11(6):923-41. PubMed ID: 26353583
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanomaterial-dependent immunoregulation of dendritic cells and its effects on biological activities of contraceptive nanovaccines.
    Xu P; Tang S; Jiang L; Yang L; Zhang D; Feng S; Zhao T; Dong Y; He W; Wang R; Zhang J; Liang Z
    J Control Release; 2016 Mar; 225():252-68. PubMed ID: 26826303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeted therapy of atherosclerosis by pH-sensitive hyaluronic acid nanoparticles co-delivering all-trans retinal and rapamycin.
    Cheraga N; Ye Z; Xu MJ; Zou L; Sun NC; Hang Y; Shan CJ; Yang ZZ; Chen LJ; Huang NP
    Nanoscale; 2022 Jun; 14(24):8709-8726. PubMed ID: 35673987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel lactoferrin-modified β-cyclodextrin nanocarrier for brain-targeting drug delivery.
    Ye Y; Sun Y; Zhao H; Lan M; Gao F; Song C; Lou K; Li H; Wang W
    Int J Pharm; 2013 Dec; 458(1):110-7. PubMed ID: 24126038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Platelet membrane-coated nanoparticle-mediated targeting delivery of Rapamycin blocks atherosclerotic plaque development and stabilizes plaque in apolipoprotein E-deficient (ApoE
    Song Y; Huang Z; Liu X; Pang Z; Chen J; Yang H; Zhang N; Cao Z; Liu M; Cao J; Li C; Yang X; Gong H; Qian J; Ge J
    Nanomedicine; 2019 Jan; 15(1):13-24. PubMed ID: 30171903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hyaluronic acid ion-pairing nanoparticles for targeted tumor therapy.
    Li W; Yi X; Liu X; Zhang Z; Fu Y; Gong T
    J Control Release; 2016 Mar; 225():170-82. PubMed ID: 26826304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and in vivo evaluation of an innovative "Hydrochlorothiazide-in Cyclodextrins-in Solid Lipid Nanoparticles" formulation with sustained release and enhanced oral bioavailability for potential hypertension treatment in pediatrics.
    Cirri M; Mennini N; Maestrelli F; Mura P; Ghelardini C; Di Cesare Mannelli L
    Int J Pharm; 2017 Apr; 521(1-2):73-83. PubMed ID: 28229944
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of miRNA-155 in carotid atherosclerotic plaques of apolipoprotein E knockout (ApoE
    Ma J; Yang S; Ma A; Pan X; Wang H; Li N; Liu S; Wu M
    Int Immunopharmacol; 2017 May; 46():70-74. PubMed ID: 28273556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Comparative Study of Orally Delivered PBCA and ApoE Coupled BSA Nanoparticles for Brain Targeting of Sumatriptan Succinate in Therapeutic Management of Migraine.
    Girotra P; Singh SK
    Pharm Res; 2016 Jul; 33(7):1682-95. PubMed ID: 27003706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intrinsic Antibacterial Activity of Nanoparticles Made of β-Cyclodextrins Potentiates Their Effect as Drug Nanocarriers against Tuberculosis.
    Machelart A; Salzano G; Li X; Demars A; Debrie AS; Menendez-Miranda M; Pancani E; Jouny S; Hoffmann E; Deboosere N; Belhaouane I; Rouanet C; Simar S; Talahari S; Giannini V; Villemagne B; Flipo M; Brosch R; Nesslany F; Deprez B; Muraille E; Locht C; Baulard AR; Willand N; Majlessi L; Gref R; Brodin P
    ACS Nano; 2019 Apr; 13(4):3992-4007. PubMed ID: 30822386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A nanotherapy responsive to the inflammatory microenvironment for the dual-targeted treatment of atherosclerosis.
    Li G; Xu F; Yang B; Lu X; Li X; Qi Y; Teng L; Li Y; Sun F; Liu W
    Nanomedicine; 2022 Jul; 43():102557. PubMed ID: 35390526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyclodextrin/poly(anhydride) nanoparticles as drug carriers for the oral delivery of atovaquone.
    Calvo J; Lavandera JL; Agüeros M; Irache JM
    Biomed Microdevices; 2011 Dec; 13(6):1015-25. PubMed ID: 21773725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of mTOR modulates SREBP-2 to induce foam cell formation through increased retinoblastoma protein phosphorylation.
    Ma KL; Liu J; Wang CX; Ni J; Zhang Y; Wu Y; Lv LL; Ruan XZ; Liu BC
    Cardiovasc Res; 2013 Dec; 100(3):450-60. PubMed ID: 24068000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inflammatory endothelium-targeted and cathepsin responsive nanoparticles are effective against atherosclerosis.
    Fang F; Ni Y; Yu H; Yin H; Yang F; Li C; Sun D; Pei T; Ma J; Deng L; Zhang H; Wang G; Li S; Shen Y; Liu X
    Theranostics; 2022; 12(9):4200-4220. PubMed ID: 35673565
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.