These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 27236085)

  • 1. Improved spatial accuracy of functional maps in the rat olfactory bulb using supervised machine learning approach.
    Murphy MC; Poplawsky AJ; Vazquez AL; Chan KC; Kim SG; Fukuda M
    Neuroimage; 2016 Aug; 137():1-8. PubMed ID: 27236085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Layer-dependent BOLD and CBV-weighted fMRI responses in the rat olfactory bulb.
    Poplawsky AJ; Kim SG
    Neuroimage; 2014 May; 91():237-51. PubMed ID: 24418506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Layer-Specific fMRI Responses to Excitatory and Inhibitory Neuronal Activities in the Olfactory Bulb.
    Poplawsky AJ; Fukuda M; Murphy M; Kim SG
    J Neurosci; 2015 Nov; 35(46):15263-75. PubMed ID: 26586815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial Mapping in the Rat Olfactory Bulb by Odor and Direct Electrical Stimulation.
    Coelho DH; Costanzo RM
    Otolaryngol Head Neck Surg; 2016 Sep; 155(3):526-32. PubMed ID: 27165674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping at glomerular resolution: fMRI of rat olfactory bulb.
    Kida I; Xu F; Shulman RG; Hyder F
    Magn Reson Med; 2002 Sep; 48(3):570-6. PubMed ID: 12210928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pattern classification of fMRI data: applications for analysis of spatially distributed cortical networks.
    Yourganov G; Schmah T; Churchill NW; Berman MG; Grady CL; Strother SC
    Neuroimage; 2014 Aug; 96():117-32. PubMed ID: 24705202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Informatics approaches to functional MRI odor mapping of the rodent olfactory bulb: OdorMapBuilder and OdorMapDB.
    Liu N; Xu F; Marenco L; Hyder F; Miller P; Shepherd GM
    Neuroinformatics; 2004; 2(1):3-18. PubMed ID: 15067166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reproducibility of odor maps by fMRI in rodents.
    Schafer JR; Kida I; Xu F; Rothman DL; Hyder F
    Neuroimage; 2006 Jul; 31(3):1238-46. PubMed ID: 16632382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast joint reconstruction of dynamic R2* and field maps in functional MRI.
    Olafsson VT; Noll DC; Fessler JA
    IEEE Trans Med Imaging; 2008 Sep; 27(9):1177-88. PubMed ID: 18753040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of spatial BOLD sensitivity variations in fMRI using gradient-echo field maps.
    Mannfolk P; Wirestam R; Nilsson M; van Westen D; Ståhlberg F; Olsrud J
    Magn Reson Imaging; 2010 Sep; 28(7):947-56. PubMed ID: 20573463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of glomerular activity patterns by fMRI and wide-field calcium imaging: Implications for principles underlying odor mapping.
    Sanganahalli BG; Rebello MR; Herman P; Papademetris X; Shepherd GM; Verhagen JV; Hyder F
    Neuroimage; 2016 Feb; 126():208-18. PubMed ID: 26631819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. fMRI visualization of transient activations in the rat olfactory bulb using short odor stimulations.
    Martin C; Grenier D; Thévenet M; Vigouroux M; Bertrand B; Janier M; Ravel N; Litaudon P
    Neuroimage; 2007 Jul; 36(4):1288-93. PubMed ID: 17512755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A spatial mixture approach to inferring sub-ROI spatio-temporal patterns from rapid event-related fMRI data.
    Shen Y; Mayhew S; Kourtzi Z; Tino P
    Med Image Comput Comput Assist Interv; 2013; 16(Pt 2):657-64. PubMed ID: 24579197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complex relationship between BOLD-fMRI and electrophysiological signals in different olfactory bulb layers.
    Li B; Gong L; Wu R; Li A; Xu F
    Neuroimage; 2014 Jul; 95():29-38. PubMed ID: 24675646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compressed sensing fMRI using gradient-recalled echo and EPI sequences.
    Zong X; Lee J; John Poplawsky A; Kim SG; Ye JC
    Neuroimage; 2014 May; 92():312-21. PubMed ID: 24495813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing neuronal activation by functional quantitative susceptibility mapping under a visual paradigm: A group level comparison with BOLD fMRI and PET.
    Özbay PS; Warnock G; Rossi C; Kuhn F; Akin B; Pruessmann KP; Nanz D
    Neuroimage; 2016 Aug; 137():52-60. PubMed ID: 27155125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wavelet-based multi-resolution statistics for optical imaging signals: Application to automated detection of odour activated glomeruli in the mouse olfactory bulb.
    Bathellier B; Van De Ville D; Blu T; Unser M; Carleton A
    Neuroimage; 2007 Feb; 34(3):1020-35. PubMed ID: 17185002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spontaneous activity forms a foundation for odor-evoked activation maps in the rat olfactory bulb.
    Thompson GJ; Sanganahalli BG; Baker KL; Herman P; Shepherd GM; Verhagen JV; Hyder F
    Neuroimage; 2018 May; 172():586-596. PubMed ID: 29374582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accurate definition of brain regions position through the functional landmark approach.
    Thirion B; Varoquaux G; Poline JB
    Med Image Comput Comput Assist Interv; 2010; 13(Pt 2):241-8. PubMed ID: 20879321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional imaging of olfaction by CBV fMRI in monkeys: insight into the role of olfactory bulb in habituation.
    Zhao F; Holahan MA; Houghton AK; Hargreaves R; Evelhoch JL; Winkelmann CT; Williams DS
    Neuroimage; 2015 Feb; 106():364-72. PubMed ID: 25498426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.