These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 27236429)

  • 1. The spatial distribution patterns of condensed phase post-blast explosive residues formed during detonation.
    Abdul-Karim N; Blackman CS; Gill PP; Karu K
    J Hazard Mater; 2016 Oct; 316():204-13. PubMed ID: 27236429
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphological Variations of Explosive Residue Particles and Implications for Understanding Detonation Mechanisms.
    Abdul-Karim N; Blackman CS; Gill PP; Morgan RM; Matjacic L; Webb R; Ng WH
    Anal Chem; 2016 Apr; 88(7):3899-908. PubMed ID: 26938055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trace explosive residue detection of HMX and RDX in post-detonation dust from an open-air environment.
    Denis EH; Morrison KA; Wharton S; Phillips S; Myers SC; Foxe MP; Ewing RG
    Talanta; 2021 May; 227():122124. PubMed ID: 33714459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Explosive particle soil surface dispersion model for detonated military munitions.
    Hathaway JE; Rishel JP; Walsh ME; Walsh MR; Taylor S
    Environ Monit Assess; 2015 Jul; 187(7):415. PubMed ID: 26050065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Perchlorate contamination from the detonation of insensitive high-explosive rounds.
    Walsh MR; Walsh ME; Ramsey CA; Brochu S; Thiboutot S; Ampleman G
    J Hazard Mater; 2013 Nov; 262():228-33. PubMed ID: 24035798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characteristics of Composition B particles from blow-in-place detonations.
    Taylor S; Campbell E; Perovich L; Lever J; Pennington J
    Chemosphere; 2006 Nov; 65(8):1405-13. PubMed ID: 16750241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The spatial distribution of postblast RDX residue: forensic implications.
    Abdul-Karim N; Morgan R; Binions R; Temple T; Harrison K
    J Forensic Sci; 2013 Mar; 58(2):365-71. PubMed ID: 23278671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Desorption of nitramine and nitroaromatic explosive residues from soils detonated under controlled conditions.
    Douglas TA; Walsh ME; McGrath CJ; Weiss CA; Jaramillo AM; Trainor TP
    Environ Toxicol Chem; 2011 Feb; 30(2):345-53. PubMed ID: 21038362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A numerical study of the evolution of the blast wave shape in tunnels.
    Benselama AM; William-Louis MJ; Monnoyer F; Proust C
    J Hazard Mater; 2010 Sep; 181(1-3):609-16. PubMed ID: 20542372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linking ammonium nitrate-aluminum (AN-AL) post-blast residues to pre-blast explosive materials using isotope ratio and trace elemental analysis for source attribution.
    Ippoliti P; Werlich J; Fuglsby C; Yarnes C; Saunders CP; Dettman J
    J Forensic Sci; 2023 Mar; 68(2):407-415. PubMed ID: 36718125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RDX and TNT residues from live-fire and blow-in-place detonations.
    Hewitt AD; Jenkins TF; Walsh ME; Walsh MR; Taylor S
    Chemosphere; 2005 Nov; 61(6):888-94. PubMed ID: 15964048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dissolution and sorption of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4,6-trinitrotoluene (TNT) residues from detonated mineral surfaces.
    Jaramillo AM; Douglas TA; Walsh ME; Trainor TP
    Chemosphere; 2011 Aug; 84(8):1058-65. PubMed ID: 21601233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sampling of explosive residues: The use of a gelatine-based medium for the recovery of ammonium nitrate.
    Amaral MA; Yasin S; Gibson AP; Morgan RM
    Sci Justice; 2020 Nov; 60(6):531-537. PubMed ID: 33077036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laminar, cellular, transverse, and multiheaded pulsating detonations in condensed phase energetic materials from molecular dynamics simulations.
    Zhakhovsky VV; Budzevich MM; Landerville AC; Oleynik II; White CT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):033312. PubMed ID: 25314569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predictive Model for Concentration Distribution of Explosive Dispersal.
    Chen X; Wang Z; Yang E; Li J
    ACS Omega; 2021 Jan; 6(3):2085-2099. PubMed ID: 33521448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A morphological investigation of soot produced by the detonation of munitions.
    Pantea D; Brochu S; Thiboutot S; Ampleman G; Scholz G
    Chemosphere; 2006 Oct; 65(5):821-31. PubMed ID: 16674994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical analysis of post explosion samples obtained as a result of model field experiments.
    Borusiewicz R; Zadora G; Zieba-Palus J
    Talanta; 2013 Nov; 116():630-6. PubMed ID: 24148455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Pathophysiologic reactions in sheep to blast waves from detonation of aerosol explosives].
    Savić J; Tatić V; Ignjatović D; Mrda V; Erdeljan D; Cernak I; Vujnov S; Simović M; Andelić G; Duknić M
    Vojnosanit Pregl; 1991; 48(6):499-506. PubMed ID: 1807044
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical prediction of steady-state detonation properties of condensed-phase explosives.
    Cengiz F; Ulas A
    J Hazard Mater; 2009 Dec; 172(2-3):1646-51. PubMed ID: 19747772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Near-field investigation of the explosive dispersal of radioactive material based on a reconstructed spherical blast-wave flow.
    Hummel D; Ivan L
    J Environ Radioact; 2017 Jun; 172():30-42. PubMed ID: 28315824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.