These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 27236801)

  • 1. In Vitro Synthesis, Delivery, and Bioavailability of Exogenous mRNA in Gene Transfer Mediated by PiggyBac Transposition.
    Bire S; Ishac N; Rouleux-Bonnin F
    Methods Mol Biol; 2016; 1428():187-217. PubMed ID: 27236801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exogenous mRNA delivery and bioavailability in gene transfer mediated by piggyBac transposition.
    Bire S; Gosset D; Jégot G; Midoux P; Pichon C; Rouleux-Bonnin F
    BMC Biotechnol; 2013 Sep; 13():75. PubMed ID: 24070093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of the piggyBac transposon using mRNA and insulators: toward a more reliable gene delivery system.
    Bire S; Ley D; Casteret S; Mermod N; Bigot Y; Rouleux-Bonnin F
    PLoS One; 2013; 8(12):e82559. PubMed ID: 24312663
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Counterselection and co-delivery of transposon and transposase functions for Sleeping Beauty-mediated transposition in cultured mammalian cells.
    Converse AD; Belur LR; Gori JL; Liu G; Amaya F; Aguilar-Cordova E; Hackett PB; McIvor RS
    Biosci Rep; 2004 Dec; 24(6):577-94. PubMed ID: 16158196
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hyperactive Himar1 transposase mediates transposition in cell culture and enhances gene expression in vivo.
    Keravala A; Liu D; Lechman ER; Wolfe D; Nash JA; Lampe DJ; Robbins PD
    Hum Gene Ther; 2006 Oct; 17(10):1006-18. PubMed ID: 16989604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An optimized polymeric delivery system for piggyBac transposition.
    Meenakshi Sundaram DN; Bahadur K C R; Fu W; Uludağ H
    Biotechnol Bioeng; 2024 May; 121(5):1503-1517. PubMed ID: 38372658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid nonviral/viral vector systems for improved piggyBac DNA transposon in vivo delivery.
    Cooney AL; Singh BK; Sinn PL
    Mol Ther; 2015 Apr; 23(4):667-74. PubMed ID: 25557623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transgene Expression and Transposition Efficiency of Two-Component Sleeping Beauty Transposon Vector Systems Utilizing Plasmid or mRNA Encoding the Transposase.
    Tschorn N; van Heuvel Y; Stitz J
    Mol Biotechnol; 2023 Aug; 65(8):1327-1335. PubMed ID: 36547824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vector modifications to eliminate transposase expression following piggyBac-mediated transgenesis.
    Chakraborty S; Ji H; Chen J; Gersbach CA; Leong KW
    Sci Rep; 2014 Dec; 4():7403. PubMed ID: 25492703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PLE-wu, a new member of piggyBac transposon family from insect, is active in mammalian cells.
    Wu C; Wang S
    J Biosci Bioeng; 2014 Oct; 118(4):359-66. PubMed ID: 24751435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dimerization through the RING-Finger Domain Attenuates Excision Activity of the piggyBac Transposase.
    Sharma R; Nirwal S; Narayanan N; Nair DT
    Biochemistry; 2018 May; 57(20):2913-2922. PubMed ID: 29750515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. piggyBac transposon system modification of primary human T cells.
    Saha S; Nakazawa Y; Huye LE; Doherty JE; Galvan DL; Rooney CM; Wilson MH
    J Vis Exp; 2012 Nov; (69):e4235. PubMed ID: 23149543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Remobilizing deleted piggyBac vector post-integration for transgene stability in silkworm.
    Wang F; Wang R; Wang Y; Xu H; Yuan L; Ding H; Ma S; Zhou Y; Zhao P; Xia Q
    Mol Genet Genomics; 2015 Jun; 290(3):1181-9. PubMed ID: 25589404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High frequencies of Minos transposon mobilization are obtained in insects by using in vitro synthesized mRNA as a source of transposase.
    Kapetanaki MG; Loukeris TG; Livadaras I; Savakis C
    Nucleic Acids Res; 2002 Aug; 30(15):3333-40. PubMed ID: 12140317
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RNA as a source of transposase for Sleeping Beauty-mediated gene insertion and expression in somatic cells and tissues.
    Wilber A; Frandsen JL; Geurts JL; Largaespada DA; Hackett PB; McIvor RS
    Mol Ther; 2006 Mar; 13(3):625-30. PubMed ID: 16368272
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transposase concentration controls transposition activity: myth or reality?
    Bire S; Casteret S; Arnaoty A; Piégu B; Lecomte T; Bigot Y
    Gene; 2013 Nov; 530(2):165-71. PubMed ID: 23994686
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hyperactive piggyBac gene transfer in human cells and in vivo.
    Doherty JE; Huye LE; Yusa K; Zhou L; Craig NL; Wilson MH
    Hum Gene Ther; 2012 Mar; 23(3):311-20. PubMed ID: 21992617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A hyperactive piggyBac transposase for mammalian applications.
    Yusa K; Zhou L; Li MA; Bradley A; Craig NL
    Proc Natl Acad Sci U S A; 2011 Jan; 108(4):1531-6. PubMed ID: 21205896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation of trangenic Xenopus laevis using the Sleeping Beauty transposon system.
    Sinzelle L; Vallin J; Coen L; Chesneau A; Du Pasquier D; Pollet N; Demeneix B; Mazabraud A
    Transgenic Res; 2006 Dec; 15(6):751-60. PubMed ID: 16957880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PiggyBac transposase and transposon derivatives for gene transfer targeting the ribosomal DNA loci of CHO cells.
    Bire S; Dusserre Y; Bigot Y; Mermod N
    J Biotechnol; 2021 Nov; 341():103-112. PubMed ID: 34560160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.