These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 2723705)

  • 1. Dynamic response of the ROSE damping device.
    Kleinman B; Powell S
    J Clin Monit; 1989 Apr; 5(2):111-5. PubMed ID: 2723705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Equivalence of fast flush and square wave testing of blood pressure monitoring systems.
    Kleinman B; Powell S; Gardner RM
    J Clin Monit; 1996 Mar; 12(2):149-54. PubMed ID: 8823635
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding natural frequency and damping and how they relate to the measurement of blood pressure.
    Kleinman B
    J Clin Monit; 1989 Apr; 5(2):137-47. PubMed ID: 2656925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of dynamic performance in liquid-filled catheter systems for measuring invasive blood pressure.
    Todorovic M; Jensen EW; Thøgersen C
    Int J Clin Monit Comput; 1996 Aug; 13(3):173-8. PubMed ID: 8912032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of planecta and ROSE™ on the frequency characteristics of blood pressure-transducer kits.
    Fujiwara S; Kawakubo Y; Mori S; Tachihara K; Toyoguchi I; Yokoyama T
    J Clin Monit Comput; 2015 Dec; 29(6):681-9. PubMed ID: 25516163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Frequency characteristics of pressure transducer kits with inserted pressure-resistant extension tubes.
    Fujiwara S; Mori S; Tachihara K; Yamamoto T; Yokoe C; Imaizumi U; Morimoto Y; Miki Y; Toyoguchi I; Yoshida KI; Yokoyama T
    J Clin Monit Comput; 2017 Apr; 31(2):371-380. PubMed ID: 26946147
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of using a Planecta™ port with a three-way stopcock on the natural frequency of blood pressure transducer kits.
    Fujiwara S; Tachihara K; Mori S; Ouchi K; Yokoe C; Imaizumi U; Morimoto Y; Miki Y; Toyoguchi I; Yoshida KI; Yokoyama T
    J Clin Monit Comput; 2016 Dec; 30(6):925-931. PubMed ID: 26467334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accuracy and dynamic response of disposable pressure transducer-tubing systems.
    Hunziker P
    Can J Anaesth; 1987 Jul; 34(4):409-14. PubMed ID: 3608063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Why the natural frequency and the damping coefficient do not evaluate the dynamic response of clinically used pressure monitoring circuits correctly.
    Watanabe H; Yagi SI
    J Anesth; 2020 Dec; 34(6):898-903. PubMed ID: 32860541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The fast flush test measures the dynamic response of the entire blood pressure monitoring system.
    Kleinman B; Powell S; Kumar P; Gardner RM
    Anesthesiology; 1992 Dec; 77(6):1215-20. PubMed ID: 1466471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction and use of catheter-manometer systems.
    Heimann PA; Murray WB
    J Clin Monit; 1993 Jan; 9(1):45-53. PubMed ID: 8463804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of the marvelous™ three-way stopcock on the natural frequency and damping coefficient in blood pressure transducer kits.
    Fujiwara SJL; Tachihara K; Mori S; Ouchi K; Itakura S; Yasuda M; Hitosugi T; Imaizumi U; Miki Y; Toyoguchi I; Yoshida KI; Yokoyama T
    J Clin Monit Comput; 2018 Feb; 32(1):63-72. PubMed ID: 28074417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of arterial pressure using catheter-transducer systems. Improvement using the Accudynamic.
    Allan MW; Gray WM; Asbury AJ
    Br J Anaesth; 1988 Mar; 60(4):413-8. PubMed ID: 3355737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The fidelity and dynamic response of fluid-filled catheter systems for direct measurement of lumbar cerebrospinal fluid pressure.
    Kumar M; Werner E; Murray MJ
    J Clin Monit; 1993 Nov; 9(5):314-20. PubMed ID: 8106883
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time-dependent pressure distortion in a catheter-transducer system: correction by fast flush.
    Promonet C; Anglade D; Menaouar A; Bayat S; Durand M; Eberhard A; Grimbert FA
    Anesthesiology; 2000 Jan; 92(1):208-18. PubMed ID: 10638918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recommendation of a clinical impulse response analysis for catheter calibration-dumping coefficient and natural frequency are incomplete parameters for clinical evaluation.
    Watanabe H; Yagi S; Namiki A
    J Clin Monit Comput; 2006 Feb; 20(1):37-42. PubMed ID: 16520875
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental analysis of catheter-manometer systems in vitro and in vivo.
    Hipkins SF; Rutten AJ; Runciman WB
    Anesthesiology; 1989 Dec; 71(6):893-906. PubMed ID: 2589678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resonance artefacts in modern pressure monitoring systems.
    Bocchi L; Romagnoli S
    J Clin Monit Comput; 2016 Oct; 30(5):707-14. PubMed ID: 26310613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of a needle valve variable resistor to improve invasive blood pressure monitoring.
    Abrams JH; Olson ML; Marino JA; Cerra FB
    Crit Care Med; 1984 Nov; 12(11):978-82. PubMed ID: 6499484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of the dynamic response of transducer-tubing system on accuracy of direct blood pressure measurement in patients.
    Boutros A; Albert S
    Crit Care Med; 1983 Feb; 11(2):124-7. PubMed ID: 6822075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.