BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

374 related articles for article (PubMed ID: 2723725)

  • 1. Physiological and pharmacological analysis of suppressive rod-cone interaction in Necturus retina [corrected].
    Eysteinsson T; Frumkes TE
    J Neurophysiol; 1989 Apr; 61(4):866-77. PubMed ID: 2723725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The cellular basis for suppressive rod-cone interaction.
    Frumkes TE; Eysteinsson T
    Vis Neurosci; 1988; 1(3):263-73. PubMed ID: 3154799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suppressive rod-cone interaction in distal vertebrate retina: intracellular records from Xenopus and Necturus.
    Frumkes TE; Eysteinsson T
    J Neurophysiol; 1987 May; 57(5):1361-82. PubMed ID: 3585472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Independent influences of rod adaptation on cone-mediated responses to light onset and offset in distal retinal neurons.
    Frumkes TE; Wu SM
    J Neurophysiol; 1990 Sep; 64(3):1043-54. PubMed ID: 2230916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Background-induced flicker enhancement in cat retinal horizontal cells. I. Temporal and spectral properties.
    Pflug R; Nelson R; Ahnelt PK
    J Neurophysiol; 1990 Aug; 64(2):313-25. PubMed ID: 2213120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temporal and spatial properties of suppressive rod-cone interaction.
    Horiguchi M; Eysteinsson T; Arden GB
    Invest Ophthalmol Vis Sci; 1991 Mar; 32(3):575-81. PubMed ID: 2001932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Properties of synaptic transmission from photoreceptors to bipolar cells in the mudpuppy retina.
    Kim HG; Miller RF
    J Neurophysiol; 1993 Feb; 69(2):352-60. PubMed ID: 8384660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rods and cones activate different excitatory amino acid receptors on the mudpuppy retinal horizontal cell.
    Kim HG; Miller RF
    Brain Res; 1991 Jan; 538(1):141-6. PubMed ID: 1673359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cones contribute to light-evoked, dopamine-mediated uncoupling of horizontal cells in the mudpuppy retina.
    Myhr KL; Dong CJ; McReynolds JS
    J Neurophysiol; 1994 Jul; 72(1):56-62. PubMed ID: 7965032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physiological and morphological correlations of horizontal cells in the mudpuppy retina.
    Kim HG; Miller RF
    J Neurophysiol; 1992 Apr; 67(4):829-40. PubMed ID: 1588385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of synaptic blocking agents on the depolarizing responses of turtle cones evoked by surround illumination.
    Thoreson WB; Burkhardt DA
    Vis Neurosci; 1990 Dec; 5(6):571-83. PubMed ID: 2085473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of rod adaptation upon cone responses to light offset in humans: I. Results in normal observers.
    Frumkes TE; Lange G; Denny N; Beczkowska I
    Vis Neurosci; 1992 Feb; 8(2):83-9. PubMed ID: 1558830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Excitatory amino acid receptors of rod- and cone-driven horizontal cells in the rabbit retina.
    Massey SC; Miller RF
    J Neurophysiol; 1987 Mar; 57(3):645-59. PubMed ID: 3031231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relative contribution of rod and cone inputs to bipolar cells and ganglion cells in the tiger salamander retina.
    Hensley SH; Yang XL; Wu SM
    J Neurophysiol; 1993 Jun; 69(6):2086-98. PubMed ID: 8350133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions of rod and cone signals in the mudpuppy retina.
    Fain GL
    J Physiol; 1975 Nov; 252(3):735-69. PubMed ID: 1206574
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of extracellular chloride suppresses transmitter release from photoreceptor terminals in the mudpuppy retina.
    Thoreson WB; Miller RF
    J Gen Physiol; 1996 May; 107(5):631-42. PubMed ID: 8740376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rod and cone signals in the horizontal cells of the tiger salamander retina.
    Hanani M; Vallerga S
    J Physiol; 1980 Jan; 298():397-405. PubMed ID: 7359420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synaptic organization and ionic basis of on and off channels in mudpuppy retina. I. Intracellular analysis of chloride-sensitive electrogenic properties of receptors, horizontal cells, bipolar cells, and amacrine cells.
    Miller RF; Dacheux RF
    J Gen Physiol; 1976 Jun; 67(6):639-59. PubMed ID: 932668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A chromatic horizontal cell in the Xenopus retina: intracellular staining and synaptic pharmacology.
    Stone S; Witkovsky P; Schütte M
    J Neurophysiol; 1990 Dec; 64(6):1683-94. PubMed ID: 1705962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AII amacrine cells quicken time course of rod signals in the cat retina.
    Nelson R
    J Neurophysiol; 1982 May; 47(5):928-47. PubMed ID: 6177841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.