These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 27237303)
41. Biotransformation of anabolic compound methasterone with Macrophomina phaseolina, Cunninghamella blakesleeana, and Fusarium lini, and TNF-α inhibitory effect of transformed products. Ahmad MS; Yousuf S; Atia-Tul-Wahab ; Jabeen A; Atta-Ur-Rahman ; Choudhary MI Steroids; 2017 Dec; 128():75-84. PubMed ID: 28404456 [TBL] [Abstract][Full Text] [Related]
42. Cunninghamella--a microbial model for drug metabolism studies--a review. Asha S; Vidyavathi M Biotechnol Adv; 2009; 27(1):16-29. PubMed ID: 18775773 [TBL] [Abstract][Full Text] [Related]
43. Structural elucidation of human oxidative metabolites of muraglitazar: use of microbial bioreactors in the biosynthesis of metabolite standards. Zhang D; Zhang H; Aranibar N; Hanson R; Huang Y; Cheng PT; Wu S; Bonacorsi S; Zhu M; Swaminathan A; Humphreys WG Drug Metab Dispos; 2006 Feb; 34(2):267-80. PubMed ID: 16280454 [TBL] [Abstract][Full Text] [Related]
44. In vitro anti-inflammatory effects of beta-carboline alkaloids, isolated from Picrasma quassioides, through inhibition of the iNOS pathway. Zhao F; Gao Z; Jiao W; Chen L; Chen L; Yao X Planta Med; 2012 Dec; 78(18):1906-11. PubMed ID: 23115019 [TBL] [Abstract][Full Text] [Related]
45. Microbial transformations of natural antitumor agents. IV. Formation of N-(2)-nor-d-tetrandrine by Cunninghamella blakesleeana (ATCC 8688a). Davis PJ; Wiese DR; Rosazza JP Lloydia; 1977; 40(3):239-46. PubMed ID: 895382 [TBL] [Abstract][Full Text] [Related]
46. Metabolism and pharmacokinetics of 3-n-butylphthalide (NBP) in humans: the role of cytochrome P450s and alcohol dehydrogenase in biotransformation. Diao X; Deng P; Xie C; Li X; Zhong D; Zhang Y; Chen X Drug Metab Dispos; 2013 Feb; 41(2):430-44. PubMed ID: 23169608 [TBL] [Abstract][Full Text] [Related]
47. Microbial biotransformation of cryptotanshinone by Cunninghamella elegans and its application for metabolite identification in rat bile. Sun JH; Yang M; Ma XC; Kang J; Han J; Guo DA J Asian Nat Prod Res; 2009 Jun; 11(6):482-9. PubMed ID: 20183279 [TBL] [Abstract][Full Text] [Related]
48. [Microbial transformation of buflomedil by Cunninghamella blakesleana AS 3.153]. Wang W; Yang YN; Ma XM; Bu P; Sun L Yao Xue Xue Bao; 2012 Jul; 47(7):934-40. PubMed ID: 22993861 [TBL] [Abstract][Full Text] [Related]
49. Microbial transformation of Norkurarinone by Cunninghamella blakesleana AS 3.970. Shi YQ; Xin XL; Zhang HC; Zhang BJ; Wang CY; Hou J; Yuan QP; Deng S; Tian Y; Ma XC J Asian Nat Prod Res; 2012; 14(9):906-12. PubMed ID: 22924649 [TBL] [Abstract][Full Text] [Related]
50. A new cinnamamide derivative and two new β-carboline alkaloids from the stems of Picrasma quassioides. Zhang J; Wang CX; Song XJ; Li S; Fan CL; Chen GD; Hu D; Yao XS; Gao H Fitoterapia; 2019 Nov; 139():104375. PubMed ID: 31629050 [TBL] [Abstract][Full Text] [Related]
51. Microbial biotransformation of retinoic acid by Cunninghamella echinulata and Cunninghamella blakesleeana. Hartman DA; Basil JB; Robertson LW; Curley RW Pharm Res; 1990 Mar; 7(3):270-3. PubMed ID: 2339101 [TBL] [Abstract][Full Text] [Related]
52. Studies on microbial transformation of meloxicam by fungi. G SP; Girisham S; Reddy SM J Microbiol Biotechnol; 2009 Sep; 19(9):922-31. PubMed ID: 19809249 [TBL] [Abstract][Full Text] [Related]
53. Microbial detoxification of carvedilol, a β-adrenergic antagonist, by the filamentous fungus Cunninghamella echinulata. Zawadzka K; Bernat P; Felczak A; Lisowska K Chemosphere; 2017 Sep; 183():18-26. PubMed ID: 28531555 [TBL] [Abstract][Full Text] [Related]
54. Cunninghamella Biotransformation--Similarities to Human Drug Metabolism and Its Relevance for the Drug Discovery Process. Piska K; Żelaszczyk D; Jamrozik M; Kubowicz-Kwaśny P; Pękala E Curr Drug Metab; 2016; 17(2):107-17. PubMed ID: 26526834 [TBL] [Abstract][Full Text] [Related]
55. Fungal transformation of norandrostenedione with Cunninghamella blakesleeana and anti-bacterial activity of the transformed products. Fodouop Chegaing SP; Kengni ADM; Siddiqui M; Fowa AB; Gatsing D; Choudhary MI Steroids; 2020 Oct; 162():108679. PubMed ID: 32569733 [TBL] [Abstract][Full Text] [Related]
56. Quassidines A-D, bis-beta-carboline alkaloids from the stems of Picrasma quassioides. Jiao WH; Gao H; Li CY; Zhao F; Jiang RW; Wang Y; Zhou GX; Yao XS J Nat Prod; 2010 Feb; 73(2):167-71. PubMed ID: 20095629 [TBL] [Abstract][Full Text] [Related]
57. In-vitro metabolism of the new anxiolytic agent, RWJ-50172, in rat hepatic S9 fraction and microbial transformation in fungi, Cunninghamella sp. Wu WN; McKown LA; Melton JL; Reitz AB J Pharm Pharmacol; 2003 Aug; 55(8):1099-105. PubMed ID: 12956899 [TBL] [Abstract][Full Text] [Related]
58. Microbial hydroxylation of bufalin by Cunninghamella blakesleana and Mucor spinosus. Ye M; Han J; Tu G; An D; Guo D J Nat Prod; 2005 Apr; 68(4):626-8. PubMed ID: 15844967 [TBL] [Abstract][Full Text] [Related]
59. Metabolites of protoberberine alkaloids in human urine following oral administration of Coptidis Rhizoma decoction. Yang Y; Kang N; Xia H; Li J; Chen L; Qiu F Planta Med; 2010 Nov; 76(16):1859-63. PubMed ID: 20549593 [TBL] [Abstract][Full Text] [Related]
60. Investigating the ability of the microbial model Cunninghamella elegans for the metabolism of synthetic tryptamines. Grafinger KE; Wilke A; König S; Weinmann W Drug Test Anal; 2019 May; 11(5):721-729. PubMed ID: 30462883 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]