These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 27238482)

  • 1. Hydrogen Peroxide Induced Protein Oxidation During Storage and Lyophilization Process.
    Cheng W; Zheng X; Yang M
    J Pharm Sci; 2016 Jun; 105(6):1837-1842. PubMed ID: 27238482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thiol-disulfide exchange in peptides derived from human growth hormone during lyophilization and storage in the solid state.
    Chandrasekhar S; Topp EM
    J Pharm Sci; 2015 Apr; 104(4):1291-302. PubMed ID: 25631887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Storage and Lyophilization of Pure Proteins.
    Ó'Fágáin C; Colliton K
    Methods Mol Biol; 2017; 1485():159-190. PubMed ID: 27730553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimizing the Formulation and Lyophilization Process for a Fragment Antigen Binding (Fab) Protein Using Solid-State Hydrogen-Deuterium Exchange Mass Spectrometry (ssHDX-MS).
    Kumar L; Chandrababu KB; Balakrishnan SM; Allmendinger A; Walters B; Zarraga IE; Chang DP; Nayak P; Topp EM
    Mol Pharm; 2019 Nov; 16(11):4485-4495. PubMed ID: 31568722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of cryoprotectants on freezing, lyophilization, and storage of lyophilized recombinant alpha 1-antitrypsin formulations.
    Vemuri S; Yu CD; Roosdorp N
    PDA J Pharm Sci Technol; 1994; 48(5):241-6. PubMed ID: 8000898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Product and process understanding to relate the effect of freezing method on glycation and aggregation of lyophilized monoclonal antibody formulations.
    Awotwe-Otoo D; Agarabi C; Read EK; Lute S; Brorson KA; Khan MA
    Int J Pharm; 2015 Jul; 490(1-2):341-50. PubMed ID: 25835267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Instability of therapeutic proteins - An overview of stresses, stabilization mechanisms and analytical techniques involved in lyophilized proteins.
    Butreddy A; Janga KY; Ajjarapu S; Sarabu S; Dudhipala N
    Int J Biol Macromol; 2021 Jan; 167():309-325. PubMed ID: 33275971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein Aggregation in Frozen Trehalose Formulations: Effects of Composition, Cooling Rate, and Storage Temperature.
    Connolly BD; Le L; Patapoff TW; Cromwell MEM; Moore JMR; Lam P
    J Pharm Sci; 2015 Dec; 104(12):4170-4184. PubMed ID: 26398200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the physical stability of a lyophilized IgG1 mAb after accelerated shipping-like stress.
    Telikepalli S; Kumru OS; Kim JH; Joshi SB; O'Berry KB; Blake-Haskins AW; Perkins MD; Middaugh CR; Volkin DB
    J Pharm Sci; 2015 Feb; 104(2):495-507. PubMed ID: 25522000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Possibility to use the lyophilization for the prolongation of the stability of biological compounds used in cosmetic production].
    Górska C; Mendrycka M
    Med Dosw Mikrobiol; 2006; 58(2):169-77. PubMed ID: 17133911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of temperature ramp rate during the primary drying process on the properties of amorphous-based lyophilized cake, Part 2: Successful lyophilization by adopting a fast ramp rate during primary drying in protein formulations.
    Ohori R; Akita T; Yamashita C
    Eur J Pharm Biopharm; 2018 Sep; 130():83-95. PubMed ID: 29913271
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein formulation and fill-finish operations.
    Patro SY; Freund E; Chang BS
    Biotechnol Annu Rev; 2002; 8():55-84. PubMed ID: 12436915
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface denaturation at solid-void interface--a possible pathway by which opalescent particulates form during the storage of lyophilized tissue-type plasminogen activator at high temperatures.
    Hsu CC; Nguyen HM; Yeung DA; Brooks DA; Koe GS; Bewley TA; Pearlman R
    Pharm Res; 1995 Jan; 12(1):69-77. PubMed ID: 7724490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-term storage of lyophilized liposomal formulations.
    Payton NM; Wempe MF; Xu Y; Anchordoquy TJ
    J Pharm Sci; 2014 Dec; 103(12):3869-3878. PubMed ID: 25308534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Basic Principles of Lyophilization, Part 2.
    Akers MJ
    Int J Pharm Compd; 2016; 20(1):20-7. PubMed ID: 27125053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent advances and further challenges in lyophilization.
    Kasper JC; Winter G; Friess W
    Eur J Pharm Biopharm; 2013 Oct; 85(2):162-9. PubMed ID: 23751601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Freeze drying of L-arginine/sucrose-based protein formulations, part I: influence of formulation and arginine counter ion on the critical formulation temperature, product performance and protein stability.
    Stärtzel P; Gieseler H; Gieseler M; Abdul-Fattah AM; Adler M; Mahler HC; Goldbach P
    J Pharm Sci; 2015 Jul; 104(7):2345-58. PubMed ID: 25994980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of controlled ice nucleation on primary drying stage and protein recovery in vials cooled in a modified freeze-dryer.
    Passot S; Tréléa IC; Marin M; Galan M; Morris GJ; Fonseca F
    J Biomech Eng; 2009 Jul; 131(7):074511. PubMed ID: 19640147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lyophilization of a triply unsaturated phospholipid: effects of trace metal contaminants.
    Payton NM; Wempe MF; Betker JL; Randolph TW; Anchordoquy TJ
    Eur J Pharm Biopharm; 2013 Oct; 85(2):306-13. PubMed ID: 23567484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of stable lyophilized protein drug products.
    Remmele RL; Krishnan S; Callahan WJ
    Curr Pharm Biotechnol; 2012 Mar; 13(3):471-96. PubMed ID: 22283723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.