BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 27238489)

  • 1. Impact of Ice Morphology on Design Space of Pharmaceutical Freeze-Drying.
    Goshima H; Do G; Nakagawa K
    J Pharm Sci; 2016 Jun; 105(6):1920-1933. PubMed ID: 27238489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast freeze-drying cycle design and optimization using a PAT based on the measurement of product temperature.
    Bosca S; Barresi AA; Fissore D
    Eur J Pharm Biopharm; 2013 Oct; 85(2):253-62. PubMed ID: 23631849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental study of the impact of annealing on ice structure and mass transfer parameters during freeze-drying of a pharmaceutical formulation.
    Chouvenc P; Vessot S; Andrieu J
    PDA J Pharm Sci Technol; 2006; 60(2):95-103. PubMed ID: 16696192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of process analytical technology for monitoring freeze-drying of an amorphous protein formulation: use of complementary tools for real-time product temperature measurements and endpoint detection.
    Schneid SC; Johnson RE; Lewis LM; Stärtzel P; Gieseler H
    J Pharm Sci; 2015 May; 104(5):1741-9. PubMed ID: 25691354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlled nucleation in freeze-drying: effects on pore size in the dried product layer, mass transfer resistance, and primary drying rate.
    Konstantinidis AK; Kuu W; Otten L; Nail SL; Sever RR
    J Pharm Sci; 2011 Aug; 100(8):3453-3470. PubMed ID: 21465488
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of mass and heat transfer parameters during freeze-drying cycles of pharmaceutical products.
    Hottot A; Vessot S; Andrieu J
    PDA J Pharm Sci Technol; 2005; 59(2):138-53. PubMed ID: 15971546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The application of dual-electrode through vial impedance spectroscopy for the determination of ice interface temperatures, primary drying rate and vial heat transfer coefficient in lyophilization process development.
    Smith G; Jeeraruangrattana Y; Ermolina I
    Eur J Pharm Biopharm; 2018 Sep; 130():224-235. PubMed ID: 29940225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Can controlled ice nucleation improve freeze-drying of highly-concentrated protein formulations?
    Geidobler R; Konrad I; Winter G
    J Pharm Sci; 2013 Nov; 102(11):3915-9. PubMed ID: 23963664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insights from a Thermodynamic Study and Its Implications on the Freeze-Drying of Pharmaceutical Solutions Containing Water and
    Wang JC; Bruttini R; Liapis AI
    PDA J Pharm Sci Technol; 2019; 73(3):247-259. PubMed ID: 30651336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The graphical design space for the primary drying phase of freeze Drying: Factors affecting the dried product layer resistance.
    Srinivasan JM; Sacha GA; Nail SL
    Int J Pharm; 2023 Jan; 630():122417. PubMed ID: 36410667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamical in-situ observation of the lyophilization and vacuum-drying processes of a model biopharmaceutical system by an environmental scanning electron microscope.
    Vetráková Ľ; Neděla V; Runštuk J; Tihlaříková E; Heger D; Shalaev E
    Int J Pharm; 2020 Jul; 585():119448. PubMed ID: 32461002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of Heat Flux Measurement as a New Process Analytical Technology Monitoring Tool in Freeze Drying.
    Vollrath I; Pauli V; Friess W; Freitag A; Hawe A; Winter G
    J Pharm Sci; 2017 May; 106(5):1249-1257. PubMed ID: 28063826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling the Secondary Drying Stage of Freeze Drying: Development and Validation of an Excel-Based Model.
    Sahni EK; Pikal MJ
    J Pharm Sci; 2017 Mar; 106(3):779-791. PubMed ID: 27914794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of freeze-dryer design on drying rate of an amorphous protein-formulation determined with a gravimetric technique.
    Gieseler H; Lee G
    Pharm Dev Technol; 2008; 13(6):463-72. PubMed ID: 18821271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of tertiary butyl alcohol and volatile salts on the sublimation of ice from frozen sucrose solutions: implications for freeze-drying.
    Oesterle J; Franks F; Auffret T
    Pharm Dev Technol; 1998 May; 3(2):175-83. PubMed ID: 9653754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The nonsteady state modeling of freeze drying: in-process product temperature and moisture content mapping and pharmaceutical product quality applications.
    Pikal MJ; Cardon S; Bhugra C; Jameel F; Rambhatla S; Mascarenhas WJ; Akay HU
    Pharm Dev Technol; 2005; 10(1):17-32. PubMed ID: 15776810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlled ice nucleation in the field of freeze-drying: fundamentals and technology review.
    Geidobler R; Winter G
    Eur J Pharm Biopharm; 2013 Oct; 85(2):214-22. PubMed ID: 23643793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monitoring of the freezing stage in a freeze-drying process using IR thermography.
    Colucci D; Maniaci R; Fissore D
    Int J Pharm; 2019 Jul; 566():488-499. PubMed ID: 31175990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial Variation of Pressure in the Lyophilization Product Chamber Part 2: Experimental Measurements and Implications for Scale-up and Batch Uniformity.
    Sane P; Varma N; Ganguly A; Pikal M; Alexeenko A; Bogner RH
    AAPS PharmSciTech; 2017 Feb; 18(2):369-380. PubMed ID: 26989063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of drying stresses on proteins during lyophilization: differentiation between primary and secondary-drying stresses on lactate dehydrogenase using a humidity controlled mini freeze-dryer.
    Luthra S; Obert JP; Kalonia DS; Pikal MJ
    J Pharm Sci; 2007 Jan; 96(1):61-70. PubMed ID: 17031859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.