These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 27238490)

  • 1. Toward Understanding Drug Release From Biodegradable Polymer Microspheres of Different Erosion Kinetics Modes.
    You S; Yang Z; Wang CH
    J Pharm Sci; 2016 Jun; 105(6):1934-1946. PubMed ID: 27238490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation of drug release from biodegradable polymeric microspheres with bulk and surface erosions.
    Zhang M; Yang Z; Chow LL; Wang CH
    J Pharm Sci; 2003 Oct; 92(10):2040-56. PubMed ID: 14502543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of mean diameter and polydispersity of PLG microspheres on drug release: experiment and theory.
    Berchane NS; Carson KH; Rice-Ficht AC; Andrews MJ
    Int J Pharm; 2007 Jun; 337(1-2):118-26. PubMed ID: 17289316
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potential of surface-eroding poly(ethylene carbonate) for drug delivery to macrophages.
    Bohr A; Water JJ; Wang Y; Arnfast L; Beck-Broichsitter M
    Int J Pharm; 2016 Sep; 511(2):814-20. PubMed ID: 27492019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A theoretical model of erosion and macromolecular drug release from biodegrading microspheres.
    Batycky RP; Hanes J; Langer R; Edwards DA
    J Pharm Sci; 1997 Dec; 86(12):1464-77. PubMed ID: 9423163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A mixture model for water uptake, degradation, erosion and drug release from polydisperse polymeric networks.
    Soares JS; Zunino P
    Biomaterials; 2010 Apr; 31(11):3032-42. PubMed ID: 20129660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural modeling of drug release from biodegradable porous matrices based on a combined diffusion/erosion process.
    Lemaire V; Bélair J; Hildgen P
    Int J Pharm; 2003 Jun; 258(1-2):95-107. PubMed ID: 12753757
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A model for hydrolytic degradation and erosion of biodegradable polymers.
    Sevim K; Pan J
    Acta Biomater; 2018 Jan; 66():192-199. PubMed ID: 29128536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mathematical modeling of PLGA microparticles: from polymer degradation to drug release.
    Casalini T; Rossi F; Lazzari S; Perale G; Masi M
    Mol Pharm; 2014 Nov; 11(11):4036-48. PubMed ID: 25230105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular analysis of drug delivery systems controlled by dissolution of the polymer carrier.
    Narasimhan B; Peppas NA
    J Pharm Sci; 1997 Mar; 86(3):297-304. PubMed ID: 9050796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biodegradable polymers in controlled drug delivery.
    Heller J
    Crit Rev Ther Drug Carrier Syst; 1984; 1(1):39-90. PubMed ID: 6400195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimising the controlled release of dexamethasone from a new generation of PLGA-based microspheres intended for intravitreal administration.
    Rodríguez Villanueva J; Bravo-Osuna I; Herrero-Vanrell R; Molina Martínez IT; Guzmán Navarro M
    Eur J Pharm Sci; 2016 Sep; 92():287-97. PubMed ID: 26987610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro drug liberation and kinetics of sustained release indomethacin suppository.
    Uzunkaya G; Bergişadi N
    Farmaco; 2003 Jul; 58(7):509-12. PubMed ID: 12818689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A unified mathematical model for the prediction of controlled release from surface and bulk eroding polymer matrices.
    Rothstein SN; Federspiel WJ; Little SR
    Biomaterials; 2009 Mar; 30(8):1657-64. PubMed ID: 19101031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of polymers on dissolution performance of an amorphous gelleable drug from surface-coated beads.
    Fan C; Pai-Thakur R; Phuapradit W; Zhang L; Tian H; Malick W; Shah N; Kislalioglu MS
    Eur J Pharm Sci; 2009 Apr; 37(1):1-10. PubMed ID: 19027852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Viscosity of polymer solution phase and other factors controlling the dissolution of theophylline microspheres prepared by the emulsion solvent evaporation method.
    Obeidat WM; Price JC
    J Microencapsul; 2003; 20(1):57-65. PubMed ID: 12519702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling microstructure development and release kinetics in controlled drug release coatings.
    Saylor DM; Kim CS; Patwardhan DV; Warren JA
    J Pharm Sci; 2009 Jan; 98(1):169-86. PubMed ID: 18481310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular weight-dependent degradation and drug release of surface-eroding poly(ethylene carbonate).
    Bohr A; Wang Y; Harmankaya N; Water JJ; Baldursdottír S; Almdal K; Beck-Broichsitter M
    Eur J Pharm Biopharm; 2017 Jun; 115():140-148. PubMed ID: 28238837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gellan gum microspheres crosslinked with trivalent ion: effect of polymer and crosslinker concentrations on drug release and mucoadhesive properties.
    Boni FI; Prezotti FG; Cury BS
    Drug Dev Ind Pharm; 2016 Aug; 42(8):1283-90. PubMed ID: 26616390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Naltrexone-loaded poly[La-(Glc-Leu)] polymeric microspheres for the treatment of alcohol dependence: in vitro characterization and in vivo biocompatibility assessment.
    Pagar KP; Vavia PR
    Pharm Dev Technol; 2014 Jun; 19(4):385-94. PubMed ID: 23590187
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.