BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 27239050)

  • 1. New method for the fabrication of highly osteoconductive β-1,3-glucan/HA scaffold for bone tissue engineering: Structural, mechanical, and biological characterization.
    Klimek K; Przekora A; Pałka K; Ginalska G
    J Biomed Mater Res A; 2016 Oct; 104(10):2528-36. PubMed ID: 27239050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomedical potential of chitosan/HA and chitosan/β-1,3-glucan/HA biomaterials as scaffolds for bone regeneration--A comparative study.
    Przekora A; Palka K; Ginalska G
    Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():891-9. PubMed ID: 26478384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chitosan/β-1,3-glucan/hydroxyapatite bone scaffold enhances osteogenic differentiation through TNF-α-mediated mechanism.
    Przekora A; Ginalska G
    Mater Sci Eng C Mater Biol Appl; 2017 Apr; 73():225-233. PubMed ID: 28183603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybrid chitosan/β-1,3-glucan matrix of bone scaffold enhances osteoblast adhesion, spreading and proliferation via promotion of serum protein adsorption.
    Przekora A; Benko A; Blazewicz M; Ginalska G
    Biomed Mater; 2016 Jul; 11(4):045001. PubMed ID: 27388048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polycaprolactone/hydroxyapatite composite scaffolds: preparation, characterization, and in vitro and in vivo biological responses of human primary bone cells.
    Chuenjitkuntaworn B; Inrung W; Damrongsri D; Mekaapiruk K; Supaphol P; Pavasant P
    J Biomed Mater Res A; 2010 Jul; 94(1):241-51. PubMed ID: 20166220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chitosan/β-1,3-glucan/calcium phosphate ceramics composites--novel cell scaffolds for bone tissue engineering application.
    Przekora A; Palka K; Ginalska G
    J Biotechnol; 2014 Jul; 182-183():46-53. PubMed ID: 24815684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication and in vivo evaluation of an osteoblast-conditioned nano-hydroxyapatite/gelatin composite scaffold for bone tissue regeneration.
    Samadikuchaksaraei A; Gholipourmalekabadi M; Erfani Ezadyar E; Azami M; Mozafari M; Johari B; Kargozar S; Jameie SB; Korourian A; Seifalian AM
    J Biomed Mater Res A; 2016 Aug; 104(8):2001-10. PubMed ID: 27027855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro evaluation of the risk of inflammatory response after chitosan/HA and chitosan/β-1,3-glucan/HA bone scaffold implantation.
    Przekora A; Ginalska G
    Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():355-61. PubMed ID: 26838861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrospun oriented gelatin-hydroxyapatite fiber scaffolds for bone tissue engineering.
    Salifu AA; Lekakou C; Labeed FH
    J Biomed Mater Res A; 2017 Jul; 105(7):1911-1926. PubMed ID: 28263431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication and characterization of novel nano-biocomposite scaffold of chitosan-gelatin-alginate-hydroxyapatite for bone tissue engineering.
    Sharma C; Dinda AK; Potdar PD; Chou CF; Mishra NC
    Mater Sci Eng C Mater Biol Appl; 2016 Jul; 64():416-427. PubMed ID: 27127072
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of adenoviral vascular endothelial growth factor-activated chitosan/hydroxyapatite scaffold for engineering vascularized bone tissue using human osteoblasts: In vitro and in vivo studies.
    Koç A; Finkenzeller G; Elçin AE; Stark GB; Elçin YM
    J Biomater Appl; 2014 Nov; 29(5):748-60. PubMed ID: 25062670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of the potential of chitosan/β-1,3-glucan/hydroxyapatite material as a scaffold for living bone graft production in vitro by comparison of ADSC and BMDSC behaviour on its surface.
    Przekora A; Vandrovcova M; Travnickova M; Pajorova J; Molitor M; Ginalska G; Bacakova L
    Biomed Mater; 2017 Feb; 12(1):015030. PubMed ID: 28054934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chitosan/hydroxyapatite (HA)/hydroxypropylmethyl cellulose (HPMC) spongy scaffolds-synthesis and evaluation as potential alveolar bone substitutes.
    Iqbal H; Ali M; Zeeshan R; Mutahir Z; Iqbal F; Nawaz MAH; Shahzadi L; Chaudhry AA; Yar M; Luan S; Khan AF; Rehman IU
    Colloids Surf B Biointerfaces; 2017 Dec; 160():553-563. PubMed ID: 29024920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of hydroxyapatite nanoparticles on mechanical behavior and biological performance of porous shape memory polyurethane scaffolds.
    Yu J; Xia H; Teramoto A; Ni QQ
    J Biomed Mater Res A; 2018 Jan; 106(1):244-254. PubMed ID: 28880433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced differentiation of osteoblastic cells on novel chitosan/β-1,3-glucan/bioceramic scaffolds for bone tissue regeneration.
    Przekora A; Ginalska G
    Biomed Mater; 2015 Jan; 10(1):015009. PubMed ID: 25586067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of a three-dimensional nanostructured biomaterial for tissue engineering of bone.
    Garreta E; Gasset D; Semino C; Borrós S
    Biomol Eng; 2007 Feb; 24(1):75-80. PubMed ID: 16846750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of 3D porous SF/β-TCP hybrid scaffolds for bone tissue reconstruction.
    Park HJ; Min KD; Lee MC; Kim SH; Lee OJ; Ju HW; Moon BM; Lee JM; Park YR; Kim DW; Jeong JY; Park CH
    J Biomed Mater Res A; 2016 Jul; 104(7):1779-87. PubMed ID: 26999521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells.
    Oliveira JM; Rodrigues MT; Silva SS; Malafaya PB; Gomes ME; Viegas CA; Dias IR; Azevedo JT; Mano JF; Reis RL
    Biomaterials; 2006 Dec; 27(36):6123-37. PubMed ID: 16945410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solvent-free polymer/bioceramic scaffolds for bone tissue engineering: fabrication, analysis, and cell growth.
    Minton J; Janney C; Akbarzadeh R; Focke C; Subramanian A; Smith T; McKinney J; Liu J; Schmitz J; James PF; Yousefi AM
    J Biomater Sci Polym Ed; 2014; 25(16):1856-74. PubMed ID: 25178801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of different hydroxyapatite incorporation methods on the structural and biological properties of porous collagen scaffolds for bone repair.
    Ryan AJ; Gleeson JP; Matsiko A; Thompson EM; O'Brien FJ
    J Anat; 2015 Dec; 227(6):732-45. PubMed ID: 25409684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.