These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 27239164)
1. A Consistent Information Criterion for Support Vector Machines in Diverging Model Spaces. Zhang X; Wu Y; Wang L; Li R J Mach Learn Res; 2016; 17(16):1-26. PubMed ID: 27239164 [TBL] [Abstract][Full Text] [Related]
2. Tuning parameter estimation in SCAD-support vector machine using firefly algorithm with application in gene selection and cancer classification. Al-Thanoon NA; Qasim OS; Algamal ZY Comput Biol Med; 2018 Dec; 103():262-268. PubMed ID: 30399534 [TBL] [Abstract][Full Text] [Related]
3. Combining extreme learning machines using support vector machines for breast tissue classification. Daliri MR Comput Methods Biomech Biomed Engin; 2015; 18(2):185-91. PubMed ID: 23627999 [TBL] [Abstract][Full Text] [Related]
4. Variable Selection for Support Vector Machines in Moderately High Dimensions. Zhang X; Wu Y; Wang L; Li R J R Stat Soc Series B Stat Methodol; 2016 Jan; 78(1):53-76. PubMed ID: 26778916 [TBL] [Abstract][Full Text] [Related]
5. Tuning Parameter Selection in Cox Proportional Hazards Model with a Diverging Number of Parameters. Ni A; Cai J Scand Stat Theory Appl; 2018 Sep; 45(3):557-570. PubMed ID: 30147217 [TBL] [Abstract][Full Text] [Related]
6. Asymptotic Behavior of Cox's Partial Likelihood and its Application to Variable Selection. Li R; Ren JJ; Yang G; Yu Y Stat Sin; 2018 Oct; 28(4):2713-2731. PubMed ID: 30294192 [TBL] [Abstract][Full Text] [Related]
7. Variable selection for case-cohort studies with failure time outcome. Ni AI; Cai J; Zeng D Biometrika; 2016 Sep; 103(3):547-562. PubMed ID: 28529347 [TBL] [Abstract][Full Text] [Related]
8. Seminal quality prediction using data mining methods. Sahoo AJ; Kumar Y Technol Health Care; 2014; 22(4):531-45. PubMed ID: 24898862 [TBL] [Abstract][Full Text] [Related]
9. Bayesian approach to feature selection and parameter tuning for support vector machine classifiers. Gold C; Holub A; Sollich P Neural Netw; 2005; 18(5-6):693-701. PubMed ID: 16111861 [TBL] [Abstract][Full Text] [Related]
10. Kernel learning at the first level of inference. Cawley GC; Talbot NL Neural Netw; 2014 May; 53():69-80. PubMed ID: 24561452 [TBL] [Abstract][Full Text] [Related]
11. Feature Import Vector Machine: A General Classifier with Flexible Feature Selection. Ghosh S; Wang Y Stat Anal Data Min; 2015 Feb; 8(1):49-63. PubMed ID: 27081431 [TBL] [Abstract][Full Text] [Related]
12. A formal analysis of stopping criteria of decomposition methods for support vector machines. Lin CJ IEEE Trans Neural Netw; 2002; 13(5):1045-52. PubMed ID: 18244502 [TBL] [Abstract][Full Text] [Related]
13. Selecting Relevant Descriptors for Classification by Bayesian Estimates: A Comparison with Decision Trees and Support Vector Machines Approaches for Disparate Data Sets. Carbon-Mangels M; Hutter MC Mol Inform; 2011 Oct; 30(10):885-95. PubMed ID: 27468108 [TBL] [Abstract][Full Text] [Related]
14. Sparse support vector machines with L Liu Z; Elashoff D; Piantadosi S Artif Intell Med; 2019 May; 96():134-141. PubMed ID: 31164207 [TBL] [Abstract][Full Text] [Related]
15. Robust Support Vector Machines for Classification with Nonconvex and Smooth Losses. Feng Y; Yang Y; Huang X; Mehrkanoon S; Suykens JA Neural Comput; 2016 Jun; 28(6):1217-47. PubMed ID: 27137357 [TBL] [Abstract][Full Text] [Related]
16. Partial Consistency with Sparse Incidental Parameters. Fan J; Tang R; Shi X Stat Sin; 2018 May; 28():2633-2655. PubMed ID: 31607773 [TBL] [Abstract][Full Text] [Related]
17. The cross-validated AUC for MCP-logistic regression with high-dimensional data. Jiang D; Huang J; Zhang Y Stat Methods Med Res; 2013 Oct; 22(5):505-18. PubMed ID: 22127580 [TBL] [Abstract][Full Text] [Related]
18. Analysis of structural brain MRI and multi-parameter classification for Alzheimer's disease. Zhang Y; Liu S Biomed Tech (Berl); 2018 Jul; 63(4):427-437. PubMed ID: 28622141 [TBL] [Abstract][Full Text] [Related]
19. Fast and efficient strategies for model selection of Gaussian support vector machine. Xu Z; Dai M; Meng D IEEE Trans Syst Man Cybern B Cybern; 2009 Oct; 39(5):1292-307. PubMed ID: 19342351 [TBL] [Abstract][Full Text] [Related]
20. Feature selection for elderly faller classification based on wearable sensors. Howcroft J; Kofman J; Lemaire ED J Neuroeng Rehabil; 2017 May; 14(1):47. PubMed ID: 28558724 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]