These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 27239474)

  • 1. Genomic Analysis Unravels Reduced Inorganic Sulfur Compound Oxidation of Heterotrophic Acidophilic Acidicaldus sp. Strain DX-1.
    Liu Y; Yang H; Zhang X; Xiao Y; Guo X; Liu X
    Biomed Res Int; 2016; 2016():8137012. PubMed ID: 27239474
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation and characterization of Acidicaldus organivorus, gen. nov., sp. nov.: a novel sulfur-oxidizing, ferric iron-reducing thermo-acidophilic heterotrophic Proteobacterium.
    Johnson DB; Stallwood B; Kimura S; Hallberg KB
    Arch Microbiol; 2006 Apr; 185(3):212-21. PubMed ID: 16432746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Oxidation of inorganic sulfur compounds by obligatory organotrophic bacteria].
    Sorokin DIu
    Mikrobiologiia; 2003; 72(6):725-39. PubMed ID: 14768537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prokaryotic sulfur oxidation.
    Friedrich CG; Bardischewsky F; Rother D; Quentmeier A; Fischer J
    Curr Opin Microbiol; 2005 Jun; 8(3):253-9. PubMed ID: 15939347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phylogenetically diverse new sulfur chemolithotrophs of alpha-proteobacteria isolated from Indian soils.
    Deb C; Stackebrandt E; Pradella S; Saha A; Roy P
    Curr Microbiol; 2004 Jun; 48(6):452-8. PubMed ID: 15170243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiology and genetics of sulfur-oxidizing bacteria.
    Friedrich CG
    Adv Microb Physiol; 1998; 39():235-89. PubMed ID: 9328649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of genes for sulfur oxidation in the intracellular chemoautotrophic symbiont of the deep-sea bivalve Calyptogena okutanii.
    Harada M; Yoshida T; Kuwahara H; Shimamura S; Takaki Y; Kato C; Miwa T; Miyake H; Maruyama T
    Extremophiles; 2009 Nov; 13(6):895-903. PubMed ID: 19730970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. H
    Hou N; Xia Y; Wang X; Liu H; Liu H; Xun L
    Biodegradation; 2018 Dec; 29(6):511-524. PubMed ID: 30141069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complete genomes of freshwater sulfur oxidizers Sulfuricella denitrificans skB26 and Sulfuritalea hydrogenivorans sk43H: genetic insights into the sulfur oxidation pathway of betaproteobacteria.
    Watanabe T; Kojima H; Fukui M
    Syst Appl Microbiol; 2014 Sep; 37(6):387-95. PubMed ID: 25017294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RNA transcript sequencing reveals inorganic sulfur compound oxidation pathways in the acidophile Acidithiobacillus ferrivorans.
    Christel S; Fridlund J; Buetti-Dinh A; Buck M; Watkin EL; Dopson M
    FEMS Microbiol Lett; 2016 Apr; 363(7):. PubMed ID: 26956550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Whole-genome sequencing reveals novel insights into sulfur oxidation in the extremophile Acidithiobacillus thiooxidans.
    Yin H; Zhang X; Li X; He Z; Liang Y; Guo X; Hu Q; Xiao Y; Cong J; Ma L; Niu J; Liu X
    BMC Microbiol; 2014 Jul; 14():179. PubMed ID: 24993543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemolithoautotrophic oxidation of thiosulfate and phylogenetic distribution of sulfur oxidation gene (soxB) in rhizobacteria isolated from crop plants.
    Anandham R; Indiragandhi P; Madhaiyan M; Ryu KY; Jee HJ; Sa TM
    Res Microbiol; 2008; 159(9-10):579-89. PubMed ID: 18832027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular characterization of inorganic sulfur-compound metabolism in the deep-sea epsilonproteobacterium Sulfurovum sp. NBC37-1.
    Yamamoto M; Nakagawa S; Shimamura S; Takai K; Horikoshi K
    Environ Microbiol; 2010 May; 12(5):1144-53. PubMed ID: 20132283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Thiobacillus sajanensis sp. nov., a new obligately autotrophic sulfur-oxidizing bacterium isolated from Khoito-Gol hydrogen-sulfide springs, Buryatia].
    Dul'tseva NM; Turova TP; Spiridonova EM; Kolganova TV; Osipov GA; Gorlenko VM
    Mikrobiologiia; 2006; 75(5):670-81. PubMed ID: 17091590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cupriavidus necator H16 Uses Flavocytochrome
    Lü C; Xia Y; Liu D; Zhao R; Gao R; Liu H; Xun L
    Appl Environ Microbiol; 2017 Nov; 83(22):. PubMed ID: 28864655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unraveling the Central Role of Sulfur-Oxidizing
    Panyushkina A; Bulaev A; Belyi AV
    Microorganisms; 2021 May; 9(5):. PubMed ID: 34062882
    [No Abstract]   [Full Text] [Related]  

  • 17. Unraveling the Physiological Roles of the Cyanobacterium Geitlerinema sp. BBD and Other Black Band Disease Community Members through Genomic Analysis of a Mixed Culture.
    Den Uyl PA; Richardson LL; Jain S; Dick GJ
    PLoS One; 2016; 11(6):e0157953. PubMed ID: 27336619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sulfide production and oxidation by heterotrophic bacteria under aerobic conditions.
    Xia Y; Lü C; Hou N; Xin Y; Liu J; Liu H; Xun L
    ISME J; 2017 Dec; 11(12):2754-2766. PubMed ID: 28777380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sulfur Oxidation in the Acidophilic Autotrophic
    Wang R; Lin JQ; Liu XM; Pang X; Zhang CJ; Yang CL; Gao XY; Lin CM; Li YQ; Li Y; Lin JQ; Chen LX
    Front Microbiol; 2018; 9():3290. PubMed ID: 30687275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two pathways for thiosulfate oxidation in the alphaproteobacterial chemolithotroph Paracoccus thiocyanatus SST.
    Rameez MJ; Pyne P; Mandal S; Chatterjee S; Alam M; Bhattacharya S; Mondal N; Sarkar J; Ghosh W
    Microbiol Res; 2020 Jan; 230():126345. PubMed ID: 31585234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.