BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 27240197)

  • 21. Autonomous Extracellular Matrix Remodeling Controls a Progressive Adaptation in Muscle Stem Cell Regenerative Capacity during Development.
    Tierney MT; Gromova A; Sesillo FB; Sala D; Spenlé C; Orend G; Sacco A
    Cell Rep; 2016 Mar; 14(8):1940-52. PubMed ID: 26904948
    [TBL] [Abstract][Full Text] [Related]  

  • 22. mRNP granule proteins Fmrp and Dcp1a differentially regulate mRNP complexes to contribute to control of muscle stem cell quiescence and activation.
    Roy N; Sundar S; Pillai M; Patell-Socha F; Ganesh S; Aloysius A; Rumman M; Gala H; Hughes SM; Zammit PS; Dhawan J
    Skelet Muscle; 2021 Jul; 11(1):18. PubMed ID: 34238354
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Perspectives on skeletal muscle stem cells.
    Relaix F; Bencze M; Borok MJ; Der Vartanian A; Gattazzo F; Mademtzoglou D; Perez-Diaz S; Prola A; Reyes-Fernandez PC; Rotini A; Taglietti
    Nat Commun; 2021 Jan; 12(1):692. PubMed ID: 33514709
    [TBL] [Abstract][Full Text] [Related]  

  • 24. JMJD3 activated hyaluronan synthesis drives muscle regeneration in an inflammatory environment.
    Nakka K; Hachmer S; Mokhtari Z; Kovac R; Bandukwala H; Bernard C; Li Y; Xie G; Liu C; Fallahi M; Megeney LA; Gondin J; Chazaud B; Brand M; Zha X; Ge K; Dilworth FJ
    Science; 2022 Aug; 377(6606):666-669. PubMed ID: 35926054
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A defined N6-methyladenosine (m
    Gheller BJ; Blum JE; Fong EHH; Malysheva OV; Cosgrove BD; Thalacker-Mercer AE
    Cell Death Discov; 2020; 6(1):95. PubMed ID: 33083017
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ribonucleotide reductase M2B in the myofibers modulates stem cell fate in skeletal muscle.
    Chen WJ; Lin IH; Lee CW; Yoshioka K; Ono Y; Yan YT; Yen Y; Chen YF
    NPJ Regen Med; 2022 Jul; 7(1):37. PubMed ID: 35906243
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Unfractionated Bulk Culture of Mouse Skeletal Muscle to Recapitulate Niche and Stem Cell Quiescence.
    Zaidan L; Geara P; Borok MJ; Machado L; Mademtzoglou D; Mourikis P; Relaix F
    J Vis Exp; 2023 Jun; (196):. PubMed ID: 37335124
    [TBL] [Abstract][Full Text] [Related]  

  • 28. p110α of PI3K is necessary and sufficient for quiescence exit in adult muscle satellite cells.
    Wang G; Zhu H; Situ C; Han L; Yu Y; Cheung TH; Liu K; Wu Z
    EMBO J; 2018 Apr; 37(8):. PubMed ID: 29581096
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ex Vivo Visualization and Analysis of the Muscle Stem Cell Niche.
    Goel AJ; Krauss RS
    Methods Mol Biol; 2019; 2002():39-50. PubMed ID: 30178310
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A robust Pax7EGFP mouse that enables the visualization of dynamic behaviors of muscle stem cells.
    Tichy ED; Sidibe DK; Greer CD; Oyster NM; Rompolas P; Rosenthal NA; Blau HM; Mourkioti F
    Skelet Muscle; 2018 Aug; 8(1):27. PubMed ID: 30139374
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Induction of muscle stem cell quiescence by the secreted niche factor Oncostatin M.
    Sampath SC; Sampath SC; Ho ATV; Corbel SY; Millstone JD; Lamb J; Walker J; Kinzel B; Schmedt C; Blau HM
    Nat Commun; 2018 Apr; 9(1):1531. PubMed ID: 29670077
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fragile X mental retardation protein regulates skeletal muscle stem cell activity by regulating the stability of Myf5 mRNA.
    Fujita R; Zismanov V; Jacob JM; Jamet S; Asiev K; Crist C
    Skelet Muscle; 2017 Sep; 7(1):18. PubMed ID: 28882193
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An injury-responsive Rac-to-Rho GTPase switch drives activation of muscle stem cells through rapid cytoskeletal remodeling.
    Kann AP; Hung M; Wang W; Nguyen J; Gilbert PM; Wu Z; Krauss RS
    Cell Stem Cell; 2022 Jun; 29(6):933-947.e6. PubMed ID: 35597234
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dlk1 regulates quiescence in calcitonin receptor-mutant muscle stem cells.
    Zhang L; Kubota M; Nakamura A; Kaji T; Seno S; Uezumi A; Andersen DC; Jensen CH; Fukada SI
    Stem Cells; 2021 Mar; 39(3):306-317. PubMed ID: 33295098
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular Regulation of Cellular Quiescence: A Perspective from Adult Stem Cells and Its Niches.
    So WK; Cheung TH
    Methods Mol Biol; 2018; 1686():1-25. PubMed ID: 29030809
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transcriptome and epigenome diversity and plasticity of muscle stem cells following transplantation.
    Evano B; Gill D; Hernando-Herraez I; Comai G; Stubbs TM; Commere PH; Reik W; Tajbakhsh S
    PLoS Genet; 2020 Oct; 16(10):e1009022. PubMed ID: 33125370
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transcriptional Profiling of Quiescent Muscle Stem Cells In Vivo.
    van Velthoven CTJ; de Morree A; Egner IM; Brett JO; Rando TA
    Cell Rep; 2017 Nov; 21(7):1994-2004. PubMed ID: 29141228
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The aged niche disrupts muscle stem cell quiescence.
    Chakkalakal JV; Jones KM; Basson MA; Brack AS
    Nature; 2012 Oct; 490(7420):355-60. PubMed ID: 23023126
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regulation of Skeletal Muscle Stem Cell Quiescence by Suv4-20h1-Dependent Facultative Heterochromatin Formation.
    Boonsanay V; Zhang T; Georgieva A; Kostin S; Qi H; Yuan X; Zhou Y; Braun T
    Cell Stem Cell; 2016 Feb; 18(2):229-42. PubMed ID: 26669898
    [TBL] [Abstract][Full Text] [Related]  

  • 40. WNT3A promotes myogenesis of human embryonic stem cells and enhances in vivo engraftment.
    Hwang Y; Suk S; Shih YR; Seo T; Du B; Xie Y; Li Z; Varghese S
    Sci Rep; 2014 Aug; 4():5916. PubMed ID: 25084050
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.