These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 2724035)

  • 21. Mechanism of coaggregation between Actinomyces viscosus T14V and Streptococcus sanguis 34.
    McIntire FC; Vatter AE; Baros J; Arnold J
    Infect Immun; 1978 Sep; 21(3):978-88. PubMed ID: 30701
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vitro attachment, salivary agglutination, and surface fibril density of fresh Actinomyces isolates from two distinct oral surfaces.
    Ellen RP; Sivendra R
    J Dent Res; 1985 May; 64(5):799-803. PubMed ID: 2860145
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of bacterial aggregation on the adherence of oral streptococci to hydroxyapatite.
    Liljemark WF; Bloomquist CG; Germaine GR
    Infect Immun; 1981 Mar; 31(3):935-41. PubMed ID: 7228408
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Adherence of oral bacteria to chemically modified hydroxyapatite.
    Hoppenbrouwers PM; Borggreven JM; van der Hoeven JS
    Caries Res; 1984; 18(1):1-6. PubMed ID: 6317176
    [No Abstract]   [Full Text] [Related]  

  • 25. Role of surface fimbriae (fibrils) in the adsorption of Actinomyces species to saliva-treated hydroxyapatite surfaces.
    Clark WB; Webb EL; Wheeler TT; Fischlschweiger W; Birdsell DC; Mansheim BJ
    Infect Immun; 1981 Sep; 33(3):908-17. PubMed ID: 6169645
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Specificity of coaggregation reactions between human oral streptococci and strains of Actinomyces viscosus or Actinomyces naeslundii.
    Cisar JO; Kolenbrander PE; McIntire FC
    Infect Immun; 1979 Jun; 24(3):742-52. PubMed ID: 468376
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of protease on cell surface structure, hydrophobicity and adhesion of tufted strains of Streptococcus sanguis biotypes I and II.
    Hesketh LM; Wyatt JE; Handley PS
    Microbios; 1987; 50(204-205):131-45. PubMed ID: 3302619
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of cecropin-XJ on growth and adherence of oral cariogenic bacteria in vitro.
    Hao YQ; Zhou XD; Xiao XR; Lu JJ; Zhang FC; Hu T; Wu HK; Chen XM
    Chin Med J (Engl); 2005 Jan; 118(2):155-60. PubMed ID: 15667802
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interbacterial adherence between Actinomyces viscosus and strains of Streptococcus pyogenes, Streptococcus agalactiae, and Pseudomonas aeruginosa.
    Komiyama K; Gibbons RJ
    Infect Immun; 1984 Apr; 44(1):86-90. PubMed ID: 6423545
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optimization of an hydroxyapatite adhesion assay for Streptococcus sanguis.
    Eifert R; Rosan B; Golub E
    Infect Immun; 1984 May; 44(2):287-91. PubMed ID: 6325348
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interaction between human polymorphonuclear leucocytes and Staphylococcus aureus in the presence and absence of opsonins.
    Vandenbroucke-Grauls CM; Thijssen HM; Verhoef J
    Immunology; 1984 Jul; 52(3):427-35. PubMed ID: 6086502
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Isolation and characterization of coaggregation-defective mutants of Actinomyces viscosus, Actinomyces naeslundii, and Streptococcus sanguis.
    Kolenbrander PE
    Infect Immun; 1982 Sep; 37(3):1200-8. PubMed ID: 7129635
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of crevicular fluid and lysosomal enzymes on the adherence of streptococci and bacteroides to hydroxyapatite.
    Cimasoni G; Song M; McBride BC
    Infect Immun; 1987 Jun; 55(6):1484-9. PubMed ID: 3032801
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lactose-reversible coaggregation between oral actinomycetes and Streptococcus sanguis.
    Kolenbrander PE; Williams BL
    Infect Immun; 1981 Jul; 33(1):95-102. PubMed ID: 7263074
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Adsorption of saliva-coated and just-harvested Streptococcus sanguis to saliva-coated hydroxyapatite beads.
    Tamura M; Kuroda K; Ueda Y; Saito N; Hirano Y; Hayashi K
    J Nihon Univ Sch Dent; 1995 Sep; 37(3):170-7. PubMed ID: 7490611
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Relative hydrophobicities of Actinomyces viscosus and Actinomyces naeslundii strains and their adsorption to saliva-treated hydroxyapatite.
    Clark WB; Lane MD; Beem JE; Bragg SL; Wheeler TT
    Infect Immun; 1985 Mar; 47(3):730-6. PubMed ID: 3972451
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Langmuir and scatchard parameters do not describe the binding of Actinomyces viscosus to saliva-treated hydroxyapatite.
    Moncla BJ; Halfpap L; Birdsell DC
    J Gen Microbiol; 1985 Oct; 131(10):2619-26. PubMed ID: 4067574
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Regulation of adherence to serum-coated hydroxyapatite by Streptococcus sanguis].
    Song X; Pan Y; Kong Q
    Zhonghua Kou Qiang Yi Xue Za Zhi; 1999 May; 34(3):172-4. PubMed ID: 11776933
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Adsorption of saliva-coated and plain streptococcal cells to the surfaces of hydroxyapatite beads.
    Tanaka H; Ebara S; Otsuka K; Hayashi K
    Arch Oral Biol; 1996 May; 41(5):505-8. PubMed ID: 8809314
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Motility and adhesiveness in human neutrophils. Redistribution of chemotactic factor-induced adhesion sites.
    Smith CW; Hollers JC
    J Clin Invest; 1980 Apr; 65(4):804-12. PubMed ID: 7358846
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.