These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Thermal dissipation as both the strength and weakness of matter. A material failure prediction by monitoring creep. Vincent-Dospital T; Toussaint R; Cochard A; Flekkøy EG; Måløy KJ Soft Matter; 2021 Apr; 17(15):4143-4150. PubMed ID: 33735364 [TBL] [Abstract][Full Text] [Related]
6. Mathematical model and numerical analysis method for dynamic fracture in a residual stress field. Hirobe S; Imakita K; Aizawa H; Kato Y; Urata S; Oguni K Phys Rev E; 2021 Aug; 104(2-2):025001. PubMed ID: 34525581 [TBL] [Abstract][Full Text] [Related]
7. Spontaneous dissipation of elastic energy by self-localizing thermal runaway. Braeck S; Podladchikov YY; Medvedev S Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):046105. PubMed ID: 19905388 [TBL] [Abstract][Full Text] [Related]
8. Threshold intensity factors as lower boundaries for crack propagation in ceramics. Marx R; Jungwirth F; Walter PO Biomed Eng Online; 2004 Nov; 3(1):41. PubMed ID: 15548323 [TBL] [Abstract][Full Text] [Related]
9. Thermal Characteristics of Borehole Stability Drilling in Hot Dry Rock. Zhu Z; Wang C; Guan Z; Lei W ACS Omega; 2021 Jul; 6(29):19026-19037. PubMed ID: 34337241 [TBL] [Abstract][Full Text] [Related]
10. Bridging steady-state and stick-slip fracture propagation in glassy polymers. Nziakou Y; George M; Fischer G; Bresson B; Tiennot M; Roux S; Halary JL; Ciccotti M Soft Matter; 2022 Jan; 18(4):793-806. PubMed ID: 34939640 [TBL] [Abstract][Full Text] [Related]
11. Crack propagation and fracture in silicon wafers under thermal stress. Danilewsky A; Wittge J; Kiefl K; Allen D; McNally P; Garagorri J; Elizalde MR; Baumbach T; Tanner BK J Appl Crystallogr; 2013 Aug; 46(Pt 4):849-855. PubMed ID: 24046487 [TBL] [Abstract][Full Text] [Related]
12. The near-tip fields of fast cracks. Livne A; Bouchbinder E; Svetlizky I; Fineberg J Science; 2010 Mar; 327(5971):1359-63. PubMed ID: 20223982 [TBL] [Abstract][Full Text] [Related]
13. Crack growth and energy dissipation in paper. Hanifpour M; Mäkinen T; Koivisto J; Ovaska M; Alava MJ Sci Rep; 2018 Nov; 8(1):17334. PubMed ID: 30478268 [TBL] [Abstract][Full Text] [Related]
16. Transition regimes for growing crack populations. Spyropoulos C; Scholz CH; Shaw BE Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 2):056105. PubMed ID: 12059645 [TBL] [Abstract][Full Text] [Related]
17. Slow crack propagation in composite restorative materials. Montes-G GM; Draughn RA J Biomed Mater Res; 1987 May; 21(5):629-42. PubMed ID: 3584167 [TBL] [Abstract][Full Text] [Related]
18. Rate-weakening friction characterizes both slow sliding and catastrophic failure of landslides. Handwerger AL; Rempel AW; Skarbek RM; Roering JJ; Hilley GE Proc Natl Acad Sci U S A; 2016 Sep; 113(37):10281-6. PubMed ID: 27573836 [TBL] [Abstract][Full Text] [Related]
19. Characterization and Prediction of Cracks in Coated Materials: Direction and Length of Crack Propagation in Bimaterials. Pruncu CI; Azari Z; Casavola C; Pappalettere C Int Sch Res Notices; 2015; 2015():594147. PubMed ID: 27347531 [TBL] [Abstract][Full Text] [Related]
20. Visualization method for stress-field evolution during rapid crack propagation using 3D printing and photoelastic testing techniques. Ju Y; Xie H; Zhao X; Mao L; Ren Z; Zheng J; Chiang FP; Wang Y; Gao F Sci Rep; 2018 Mar; 8(1):4353. PubMed ID: 29531306 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]