These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 27240735)
1. Secondary phases and their influence on the composition of the kesterite phase in CZTS and CZTSe thin films. Just J; Sutter-Fella CM; Lützenkirchen-Hecht D; Frahm R; Schorr S; Unold T Phys Chem Chem Phys; 2016 Jun; 18(23):15988-94. PubMed ID: 27240735 [TBL] [Abstract][Full Text] [Related]
2. Nanoscale Characterization of Growth of Secondary Phases in Off-Stoichiometric CZTS Thin Films. Vishwakarma M; Karakulina OM; Abakumov AM; Hadermann J; Mehta BR J Nanosci Nanotechnol; 2018 Mar; 18(3):1688-1695. PubMed ID: 29448646 [TBL] [Abstract][Full Text] [Related]
3. Large-scale growth of Cu2ZnSnSe4 and Cu2ZnSnSe4/Cu2ZnSnS4 core/shell nanowires. Li ZQ; Shi JH; Liu QQ; Chen YW; Sun Z; Yang Z; Huang SM Nanotechnology; 2011 Jul; 22(26):265615. PubMed ID: 21586809 [TBL] [Abstract][Full Text] [Related]
4. The stability domain of the selenide kesterite photovoltaic materials and NMR investigation of the Cu/Zn disorder in Cu2ZnSnSe4 (CZTSe). Choubrac L; Lafond A; Paris M; Guillot-Deudon C; Jobic S Phys Chem Chem Phys; 2015 Jun; 17(23):15088-92. PubMed ID: 25990030 [TBL] [Abstract][Full Text] [Related]
5. Impact of 1,8-Diiodooctane (DIO) Additive on the Active Layer Properties of Cu Mkawi EM; Al-Hadeethi Y; Arkook B; Bekyarova E Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837288 [TBL] [Abstract][Full Text] [Related]
6. CZTSe solar cells prepared by electrodeposition of Cu/Sn/Zn stack layer followed by selenization at low Se pressure. Yao L; Ao J; Jeng MJ; Bi J; Gao S; He Q; Zhou Z; Sun G; Sun Y; Chang LB; Chen JW Nanoscale Res Lett; 2014; 9(1):678. PubMed ID: 25593559 [TBL] [Abstract][Full Text] [Related]
7. Anion exchange induced formation of kesterite copper zinc tin sulphide-copper zinc tin selenide nanoheterostructures. Yin D; Li Q; Liu Y; Swihart MT Nanoscale; 2021 Mar; 13(9):4828-4834. PubMed ID: 33650624 [TBL] [Abstract][Full Text] [Related]
8. Solution-processed highly efficient Cu2ZnSnSe4 thin film solar cells by dissolution of elemental Cu, Zn, Sn, and Se powders. Yang Y; Wang G; Zhao W; Tian Q; Huang L; Pan D ACS Appl Mater Interfaces; 2015 Jan; 7(1):460-4. PubMed ID: 25494493 [TBL] [Abstract][Full Text] [Related]
9. Influence of the Reaction Pathway on the Defect Formation in a Cu Yoo H; Jang JS; Shin SW; Lee J; Kim J; Kim DM; Lee IJ; Lee BH; Park J; Kim JH ACS Appl Mater Interfaces; 2021 Mar; 13(11):13425-13433. PubMed ID: 33706505 [TBL] [Abstract][Full Text] [Related]
10. KCN Chemical Etch for Interface Engineering in Cu2ZnSnSe4 Solar Cells. Buffière M; Brammertz G; Sahayaraj S; Batuk M; Khelifi S; Mangin D; El Mel AA; Arzel L; Hadermann J; Meuris M; Poortmans J ACS Appl Mater Interfaces; 2015 Jul; 7(27):14690-8. PubMed ID: 26039042 [TBL] [Abstract][Full Text] [Related]
11. Precisely Controlled Synthesis of High Quality Kesterite Cu2ZnSnS4 Thin Film via Co-Electrodeposited CuZnSn Alloy Film. Hreid T; Tiong VT; Cai M; Wang H; Will G J Nanosci Nanotechnol; 2016 Jun; 16(6):5701-6. PubMed ID: 27427618 [TBL] [Abstract][Full Text] [Related]
12. Growth of Cu2ZnSnSe4 Film under Controllable Se Vapor Composition and Impact of Low Cu Content on Solar Cell Efficiency. Li J; Wang H; Wu L; Chen C; Zhou Z; Liu F; Sun Y; Han J; Zhang Y ACS Appl Mater Interfaces; 2016 Apr; 8(16):10283-92. PubMed ID: 27058738 [TBL] [Abstract][Full Text] [Related]
13. Cationic and Anionic Disorder in CZTSSe Kesterite Compounds: A Chemical Crystallography Study. Bais P; Caldes MT; Paris M; Guillot-Deudon C; Fertey P; Domengès B; Lafond A Inorg Chem; 2017 Oct; 56(19):11779-11786. PubMed ID: 28915017 [TBL] [Abstract][Full Text] [Related]
14. Annealing Induced Shape Transformation of CZTS Nanorods Based Thin Films. Rajesh G; Muthukumarasamy N; Velauthapillai D; Batabyal SK Langmuir; 2017 Jun; 33(24):6151-6158. PubMed ID: 28534636 [TBL] [Abstract][Full Text] [Related]
15. Solvent engineering to regulate the phase of copper zinc tin sulfide nanocrystals. Zhu Y; Qing H; Dong W; Dong M; Shen T; Cui J Dalton Trans; 2022 Nov; 51(45):17328-17337. PubMed ID: 36321603 [TBL] [Abstract][Full Text] [Related]
16. Effect of the Counteranion on the Formation Pathway of Cu Ahmad R; Saddiqi NU; Wu M; Prato M; Spiecker E; Peukert W; Distaso M Inorg Chem; 2020 Feb; 59(3):1973-1984. PubMed ID: 31971380 [TBL] [Abstract][Full Text] [Related]
17. Effect of Sn Content in a CuSnZn Metal Precursor on Formation of MoSe₂ Film during Selenization in Se+SnSe Vapor. Yao L; Ao J; Jeng MJ; Bi J; Gao S; Sun G; He Q; Zhou Z; Sun Y; Chang LB Materials (Basel); 2016 Mar; 9(4):. PubMed ID: 28773366 [TBL] [Abstract][Full Text] [Related]
18. Grain-to-Grain Compositional Variations and Phase Segregation in Copper-Zinc-Tin-Sulfide Films. Alvarez Barragan A; Malekpour H; Exarhos S; Balandin AA; Mangolini L ACS Appl Mater Interfaces; 2016 Sep; 8(35):22971-6. PubMed ID: 27538122 [TBL] [Abstract][Full Text] [Related]
19. Effect of sulfurization time on the properties of copper zinc tin sulfide thin films grown by electrochemical deposition. Aldalbahi A; Mkawi EM; Ibrahim K; Farrukh MA Sci Rep; 2016 Sep; 6():32431. PubMed ID: 27600023 [TBL] [Abstract][Full Text] [Related]
20. RF-magnetron sputtered kesterite Cu2ZnSnS4 thin film using single quaternary sputtering target prepared by sintering process. Yoo D; Choi M; Heo SC; Kim D; Chung C; Choi C J Nanosci Nanotechnol; 2013 Nov; 13(11):7734-40. PubMed ID: 24245324 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]