These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 27240770)

  • 81. A two-dimensional zinc(II) coordination polymer based on mixed dimethyl succinate and bipyridine ligands: synthesis, structure, thermostability and luminescence properties.
    Liu Y; Feng YL; Fu WW
    Acta Crystallogr C Struct Chem; 2016 Apr; 72(Pt 4):308-12. PubMed ID: 27045181
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Structural evolution under pressure of BiMnO3.
    Calestani G; Orlandi F; Mezzadri F; Righi L; Merlini M; Gilioli E
    Inorg Chem; 2014 Aug; 53(16):8749-54. PubMed ID: 25079764
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Structural diversity in supramolecular complexes of MCl(3) (M = As, Sb, Bi) with constrained thio- and seleno-ether ligands.
    Levason W; Maheshwari S; Ratnani R; Reid G; Webster M; Zhang W
    Inorg Chem; 2010 Oct; 49(19):9036-48. PubMed ID: 20812749
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Influence of ionic liquids on the syntheses and structures of Mn(II) coordination polymers based on multidentate N-heterocyclic aromatic ligands and bridging carboxylate ligands.
    Qin JH; Wang HR; Pan Q; Zang SQ; Hou H; Fan Y
    Dalton Trans; 2015 Oct; 44(40):17639-51. PubMed ID: 26394243
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Synthesis and crystal structure of a two-dimensional sodium coordination polymer of 4,4'-(diazenediyl)bis(1H-1,2,4-triazol-5-one).
    Guo J; Cao W; Li S; Miao K; Song J; Huang J
    Acta Crystallogr C Struct Chem; 2016 Feb; 72(Pt 2):166-9. PubMed ID: 26846504
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Controlling the self-assembly of homochiral coordination architectures of Cu(II) by substitution in amino acid based ligands: synthesis, crystal structures and physicochemical properties.
    Kumar N; Khullar S; Mandal SK
    Dalton Trans; 2015 Mar; 44(12):5672-87. PubMed ID: 25710738
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Two different anionic manganese(II) coordination polymers constructed through dicyanamide coordination bridges.
    Wang HT
    Acta Crystallogr C Struct Chem; 2015 Oct; 71(Pt 10):850-5. PubMed ID: 26422210
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Pressure-induced penetration of guest molecules in high-silica zeolites: the case of mordenite.
    Arletti R; Leardini L; Vezzalini G; Quartieri S; Gigli L; Santoro M; Haines J; Rouquette J; Konczewicz L
    Phys Chem Chem Phys; 2015 Oct; 17(37):24262-74. PubMed ID: 26325490
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Compressibility of lysozyme protein crystals by X-ray diffraction.
    Katrusiak A; Dauter Z
    Acta Crystallogr D Biol Crystallogr; 1996 May; 52(Pt 3):607-8. PubMed ID: 15299694
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Poly[diaquacobalt(II)-di-mu4-benzene-1,2,4-tricarboxylato-bis[1,10-phenanthrolinecobalt(II)]].
    Hu ML; Yuan JX; Xiao HP; Chen F
    Acta Crystallogr C; 2004 Jun; 60(Pt 6):m235-7. PubMed ID: 15178834
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Temperature- and pressure-dependent lattice behaviour of RbFe(MoO4)2.
    Waśkowska A; Gerward L; Olsen JS; Morgenroth W; Mączka M; Hermanowicz K
    J Phys Condens Matter; 2010 Feb; 22(5):055406. PubMed ID: 21386344
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Pressure-induced magnetic transition in manganite (La0.75Ca0.25MnO3).
    Ding Y; Haskel D; Tseng YC; Kaneshita E; van Veenendaal M; Mitchell JF; Sinogeikin SV; Prakapenka V; Mao HK
    Phys Rev Lett; 2009 Jun; 102(23):237201. PubMed ID: 19658965
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Synthesis, crystal structure, and spectroscopic characterization of trans-bis[(mu-1,3-bis(4-pyridyl)propane)(mu-(3-thiopheneacetate-O))(3-thiopheneacetate-O)]dicopper(II), [[Cu2(O2CCH2C4H3S)4mu-(BPP)2]]n: from a dinuclear paddle-wheel copper(II) unit to a 2-D coordination polymer involving monatomic carboxylate bridges.
    Marinho MV; Yoshida MI; Guedes KJ; Krambrock K; Bortoluzzi AJ; Hörner M; Machado FC; Teles WM
    Inorg Chem; 2004 Feb; 43(4):1539-44. PubMed ID: 14966992
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Persistence of the stereochemical activity of the Bi3+ lone electron pair in Bi2Ga4O9 up to 50 GPa and crystal structure of the high-pressure phase.
    Friedrich A; Juarez-Arellano EA; Haussühl E; Boehler R; Winkler B; Wiehl L; Morgenroth W; Burianek M; Mühlberg M
    Acta Crystallogr B; 2010 Jun; 66(Pt 3):323-37. PubMed ID: 20484803
    [TBL] [Abstract][Full Text] [Related]  

  • 95. A new one-dimensional coordination polymer of 5-(1,3-dioxo-4,5,6,7-tetraphenylisoindolin-2-yl)isophthalic acid with manganese.
    Wang J; Jia C; Feng X; Yuan W
    Acta Crystallogr C Struct Chem; 2015 Sep; 71(Pt 9):759-62. PubMed ID: 26322606
    [TBL] [Abstract][Full Text] [Related]  

  • 96. The odd association of a C(3h) trisamidinium cation and tosylate anion with a series of linear oxalate-bridged trinuclear heterometallic complexes.
    Maxim C; Pardo E; Hosseini MW; Ferlay S; Train C
    Dalton Trans; 2013 Apr; 42(13):4704-13. PubMed ID: 23360960
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Structural Behavior of Minrecordite Carbonate Mineral upon Compression: Effect of Mg → Zn Chemical Substitution in Dolomite-Type Compounds.
    Santamaría-Pérez D; Chuliá-Jordán R; Otero-de-la-Roza A; Ruiz-Fuertes J; Pellicer-Porres J; Popescu C
    ACS Omega; 2023 Mar; 8(11):10403-10410. PubMed ID: 36969435
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Introducing Benzene-1,3,5-tri(dithiocarboxylate) as a Multidentate Linker in Coordination Chemistry.
    Aust M; Herold AJ; Niederegger L; Schneider C; Mayer DC; Drees M; Warnan J; Pöthig A; Fischer RA
    Inorg Chem; 2021 Dec; 60(24):19242-19252. PubMed ID: 34870417
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Single-Bonded Cubic AsN from High-Pressure and High-Temperature Chemical Reactivity of Arsenic and Nitrogen.
    Ceppatelli M; Scelta D; Serrano-Ruiz M; Dziubek K; Morana M; Svitlyk V; Garbarino G; Poręba T; Mezouar M; Peruzzini M; Bini R
    Angew Chem Int Ed Engl; 2022 Feb; 61(6):e202114191. PubMed ID: 34797602
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Degradation paths of manganese-based MOF materials in a model oxidative environment: a computational study.
    Khramenkova EV; Polynski MV; Vinogradov AV; Pidko EA
    Phys Chem Chem Phys; 2018 Aug; 20(32):20785-20795. PubMed ID: 29911242
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.