These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 27241031)
21. Highly enhanced transverse plasmon resonance and tunable double Fano resonances in gold@titania nanorods. Ruan Q; Fang C; Jiang R; Jia H; Lai Y; Wang J; Lin HQ Nanoscale; 2016 Mar; 8(12):6514-26. PubMed ID: 26935180 [TBL] [Abstract][Full Text] [Related]
22. Controlled Synthesis of Au Nanocrystals-Metal Selenide Hybrid Nanostructures toward Plasmon-Enhanced Photoelectrochemical Energy Conversion. Tang L; Liang S; Li JB; Zhang D; Chen WB; Yang ZJ; Xiao S; Wang QQ Nanomaterials (Basel); 2020 Mar; 10(3):. PubMed ID: 32245031 [TBL] [Abstract][Full Text] [Related]
23. Band gap engineering of ZnO using core/shell morphology with environmentally benign Ag₂S sensitizer for efficient light harvesting and enhanced visible-light photocatalysis. Khanchandani S; Srivastava PK; Kumar S; Ghosh S; Ganguli AK Inorg Chem; 2014 Sep; 53(17):8902-12. PubMed ID: 25144692 [TBL] [Abstract][Full Text] [Related]
24. Core-shell Au@AuAg nano-peanuts for the catalytic reduction of 4-nitrophenol: critical role of hollow interior and broken shell structure. Thambi V; Gautam ARS; Khatua S Nanoscale Adv; 2020 Oct; 2(10):4841-4852. PubMed ID: 36132891 [TBL] [Abstract][Full Text] [Related]
25. Controlled growth and optical response of a semi-hollow plasmonic nanocavity and ultrathin sulfide nanosheets on Au/Ag platelets. Xie Y; Pan GM; Li YY; Chen K; Lin YJ; Zhou L; Wang QQ Nanoscale; 2018 Jan; 10(3):1279-1285. PubMed ID: 29292820 [TBL] [Abstract][Full Text] [Related]
26. Core-shell Au@Pd nanoparticles with enhanced catalytic activity for oxygen reduction reaction via core-shell Au@Ag/Pd constructions. Chen D; Li C; Liu H; Ye F; Yang J Sci Rep; 2015 Jul; 5():11949. PubMed ID: 26144550 [TBL] [Abstract][Full Text] [Related]
27. Synthesis and optical properties of nanorattles and multiple-walled nanoshells/nanotubes made of metal alloys. Sun Y; Wiley B; Li ZY; Xia Y J Am Chem Soc; 2004 Aug; 126(30):9399-406. PubMed ID: 15281832 [TBL] [Abstract][Full Text] [Related]
28. Surface enhanced Raman spectroscopic studies on magnetic Fe3O4@AuAg alloy core-shell nanoparticles. Sun HL; Xu MM; Guo QH; Yuan YX; Shen LM; Gu RA; Yao JL Spectrochim Acta A Mol Biomol Spectrosc; 2013 Oct; 114():579-85. PubMed ID: 23800776 [TBL] [Abstract][Full Text] [Related]
29. Enhanced photocurrent and dynamic response in vertically aligned In₂S₃/Ag core/shell nanorod array photoconductive devices. Cansizoglu H; Cansizoglu MF; Watanabe F; Karabacak T ACS Appl Mater Interfaces; 2014 Jun; 6(11):8673-82. PubMed ID: 24824452 [TBL] [Abstract][Full Text] [Related]
30. Localized Surface Plasmon Resonance-Mediated Charge Trapping/Detrapping for Core-Shell Nanorod-Based Optical Memory Cells. Zhou L; Han ST; Shu S; Zhuang J; Yan Y; Sun QJ; Zhou Y; Roy VAL ACS Appl Mater Interfaces; 2017 Oct; 9(39):34101-34110. PubMed ID: 28891295 [TBL] [Abstract][Full Text] [Related]
31. Plasmonic/Nonlinear Optical Material Core/Shell Nanorods as Nanoscale Plasmon Modulators and Optical Voltage Sensors. Yin A; He Q; Lin Z; Luo L; Liu Y; Yang S; Wu H; Ding M; Huang Y; Duan X Angew Chem Int Ed Engl; 2016 Jan; 55(2):583-7. PubMed ID: 26783058 [TBL] [Abstract][Full Text] [Related]
32. Investigation of Various Types of Nanorods as Sensitive Surface-Enhanced Raman Scattering Substrates. Kuo HF; Huang YJ; Chen YT IEEE Trans Nanobioscience; 2015 Sep; 14(6):581-90. PubMed ID: 26011891 [TBL] [Abstract][Full Text] [Related]
33. Synthesis and characterization of Au core-Au-Ag shell nanoparticles from gold seeds: impacts of glycine concentration and pH. Huang YF; Huang KM; Chang HT J Colloid Interface Sci; 2006 Sep; 301(1):145-54. PubMed ID: 16777126 [TBL] [Abstract][Full Text] [Related]
34. Observation of a quadrupole surface plasmon mode for Au nanorods: effects of surface roughness and crystal facets. Hong S; Shuford KL; Park S Chem Asian J; 2013 Jun; 8(6):1259-64. PubMed ID: 23512730 [TBL] [Abstract][Full Text] [Related]
35. ASAXS study on the formation of core-shell Ag/Au nanoparticles in glass. Haug J; Kruth H; Dubiel M; Hofmeister H; Haas S; Tatchev D; Hoell A Nanotechnology; 2009 Dec; 20(50):505705. PubMed ID: 19923657 [TBL] [Abstract][Full Text] [Related]
36. Facile Synthesis of Ag Nanorods with No Plasmon Resonance Peak in the Visible Region by Using Pd Decahedra of 16 nm in Size as Seeds. Luo M; Huang H; Choi SI; Zhang C; da Silva RR; Peng HC; Li ZY; Liu J; He Z; Xia Y ACS Nano; 2015 Oct; 9(10):10523-32. PubMed ID: 26372854 [TBL] [Abstract][Full Text] [Related]
37. Magnetic Plasmon-Enhanced Second-Harmonic Generation on Colloidal Gold Nanocups. Ding SJ; Zhang H; Yang DJ; Qiu YH; Nan F; Yang ZJ; Wang J; Wang QQ; Lin HQ Nano Lett; 2019 Mar; 19(3):2005-2011. PubMed ID: 30721073 [TBL] [Abstract][Full Text] [Related]
38. Au nanocrystal-directed growth of Au-Cu(2)O core-shell heterostructures with precise morphological control. Kuo CH; Hua TE; Huang MH J Am Chem Soc; 2009 Dec; 131(49):17871-8. PubMed ID: 19919066 [TBL] [Abstract][Full Text] [Related]
39. High-yield, ultrafast, surface plasmon-enhanced, Au nanorod optical field electron emitter arrays. Hobbs RG; Yang Y; Fallahi A; Keathley PD; De Leo E; Kärtner FX; Graves WS; Berggren KK ACS Nano; 2014 Nov; 8(11):11474-82. PubMed ID: 25380557 [TBL] [Abstract][Full Text] [Related]